Files
PINA/pina/data/dataset.py
Filippo Olivo a27bd35443 Implementation of DataLoader and DataModule (#383)
Refactoring for 0.2
* Data module, data loader and dataset
* Refactor LabelTensor
* Refactor solvers

Co-authored-by: dario-coscia <dariocos99@gmail.com>
2025-03-19 17:46:34 +01:00

103 lines
3.8 KiB
Python

"""
This module provide basic data management functionalities
"""
import torch
from torch.utils.data import Dataset
from abc import abstractmethod
from torch_geometric.data import Batch
class PinaDatasetFactory:
"""
Factory class for the PINA dataset. Depending on the type inside the
conditions it creates a different dataset object:
- PinaTensorDataset for torch.Tensor
- PinaGraphDataset for list of torch_geometric.data.Data objects
"""
def __new__(cls, conditions_dict, **kwargs):
if len(conditions_dict) == 0:
raise ValueError('No conditions provided')
if all([isinstance(v['input_points'], torch.Tensor) for v
in conditions_dict.values()]):
return PinaTensorDataset(conditions_dict, **kwargs)
elif all([isinstance(v['input_points'], list) for v
in conditions_dict.values()]):
return PinaGraphDataset(conditions_dict, **kwargs)
raise ValueError('Conditions must be either torch.Tensor or list of Data '
'objects.')
class PinaDataset(Dataset):
"""
Abstract class for the PINA dataset
"""
def __init__(self, conditions_dict, max_conditions_lengths):
self.conditions_dict = conditions_dict
self.max_conditions_lengths = max_conditions_lengths
self.conditions_length = {k: len(v['input_points']) for k, v in
self.conditions_dict.items()}
self.length = max(self.conditions_length.values())
def _get_max_len(self):
max_len = 0
for condition in self.conditions_dict.values():
max_len = max(max_len, len(condition['input_points']))
return max_len
def __len__(self):
return self.length
@abstractmethod
def __getitem__(self, item):
pass
class PinaTensorDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
):
super().__init__(conditions_dict, max_conditions_lengths)
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
}
def _getitem_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx%condition_len for idx in cond_idx]
to_return_dict[condition] = {k: v[cond_idx]
for k, v in data.items()}
return to_return_dict
def __getitem__(self, idx):
if isinstance(idx, int):
return self._getitem_int(idx)
return self._getitem_list(idx)
class PinaGraphDataset(PinaDataset):
pass
"""
def __init__(self, conditions_dict, max_conditions_lengths):
super().__init__(conditions_dict, max_conditions_lengths)
def __getitem__(self, idx):
Getitem method for large batch size
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx%condition_len for idx in cond_idx]
to_return_dict[condition] = {k: Batch.from_data_list([v[i]
for i in cond_idx])
if isinstance(v, list)
else v[cond_idx].tensor.reshape(-1, v.size(-1))
for k, v in data.items()
}
return to_return_dict
"""