549 lines
21 KiB
Python
549 lines
21 KiB
Python
"""Module for Continuous Convolution class"""
|
|
from .convolution import BaseContinuousConv
|
|
from .utils_convolution import check_point, map_points_
|
|
from .integral import Integral
|
|
from ..feed_forward import FeedForward
|
|
import torch
|
|
|
|
|
|
class ContinuousConvBlock(BaseContinuousConv):
|
|
"""
|
|
Implementation of Continuous Convolutional operator.
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Coscia, D., Meneghetti, L., Demo, N.,
|
|
Stabile, G., & Rozza, G.. (2022). A Continuous Convolutional Trainable
|
|
Filter for Modelling Unstructured Data.
|
|
DOI: `10.48550/arXiv.2210.13416
|
|
<https://doi.org/10.48550/arXiv.2210.13416>`_.
|
|
|
|
"""
|
|
|
|
def __init__(self, input_numb_field, output_numb_field,
|
|
filter_dim, stride, model=None, optimize=False,
|
|
no_overlap=False):
|
|
"""
|
|
|
|
:param input_numb_field: Number of fields N_in in the input.
|
|
:type input_numb_field: int
|
|
:param output_numb_field: Number of fields N_out in the output.
|
|
:type output_numb_field: int
|
|
:param filter_dim: Dimension of the filter.
|
|
:type filter_dim: tuple/ list
|
|
:param stride: Stride for the filter.
|
|
:type stride: dict
|
|
:param model: Neural network for inner parametrization,
|
|
defaults to None. If None, pina.FeedForward is used, more
|
|
on https://mathlab.github.io/PINA/_rst/fnn.html.
|
|
:type model: torch.nn.Module, optional
|
|
:param optimize: Flag for performing optimization on the continuous
|
|
filter, defaults to False. The flag `optimize=True` should be
|
|
used only when the scatter datapoints are fixed through the
|
|
training. If torch model is in `.eval()` mode, the flag is
|
|
automatically set to False always.
|
|
:type optimize: bool, optional
|
|
:param no_overlap: Flag for performing optimization on the transpose
|
|
continuous filter, defaults to False. The flag set to `True` should
|
|
be used only when the filter positions do not overlap for different
|
|
strides. RuntimeError will raise in case of non-compatible strides.
|
|
:type no_overlap: bool, optional
|
|
|
|
.. note::
|
|
Using `optimize=True` the filter can be use either in `forward`
|
|
or in `transpose` mode, not both. If `optimize=False` the same
|
|
filter can be used for both `transpose` and `forward` modes.
|
|
|
|
.. warning::
|
|
The algorithm expects input to be in the form: [B x N_in x N x D]
|
|
where B is the batch_size, N_in is the number of input
|
|
fields, N the number of points in the mesh, D the dimension
|
|
of the problem. In particular:
|
|
|
|
* D is the number of spatial variables + 1. The last column must
|
|
contain the field value. For example for 2D problems D=3 and
|
|
the tensor will be something like `[first coordinate, second
|
|
coordinate, field value]`.
|
|
|
|
* N_in represents the number of vectorial function presented.
|
|
For example a vectorial function f = [f_1, f_2] will have
|
|
N_in=2.
|
|
|
|
The algorithm returns a tensor of shape: [B x N_out x N x D]
|
|
where B is the batch_size, N_out is the number of output
|
|
fields, N' the number of points in the mesh, D the dimension
|
|
of the problem (coordinates + field value).
|
|
|
|
For example, a 2-dimensional vectorial function N_in=2 of
|
|
3-dimensionalcinput D=3+1=4 with 100 points input mesh and batch
|
|
size of 8 is represented as a tensor `[8, 2, 100, 4]`, where the
|
|
columnsc`[:, 0, :, -1]` and `[:, 1, :, -1]` represent the first and
|
|
second filed value respectively.
|
|
|
|
:Example:
|
|
>>> class MLP(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self. model = torch.nn.Sequential(
|
|
torch.nn.Linear(2, 8),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Linear(8, 8),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Linear(8, 1))
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
>>> dim = [3, 3]
|
|
>>> stride = {"domain": [10, 10],
|
|
"start": [0, 0],
|
|
"jumps": [3, 3],
|
|
"direction": [1, 1.]}
|
|
>>> conv = ContinuousConv2D(1, 2, dim, stride, MLP)
|
|
>>> conv
|
|
ContinuousConv2D(
|
|
(_net): ModuleList(
|
|
(0): MLP(
|
|
(model): Sequential(
|
|
(0): Linear(in_features=2, out_features=8, bias=True)
|
|
(1): ReLU()
|
|
(2): Linear(in_features=8, out_features=8, bias=True)
|
|
(3): ReLU()
|
|
(4): Linear(in_features=8, out_features=1, bias=True)
|
|
)
|
|
)
|
|
(1): MLP(
|
|
(model): Sequential(
|
|
(0): Linear(in_features=2, out_features=8, bias=True)
|
|
(1): ReLU()
|
|
(2): Linear(in_features=8, out_features=8, bias=True)
|
|
(3): ReLU()
|
|
(4): Linear(in_features=8, out_features=1, bias=True)
|
|
)
|
|
)
|
|
)
|
|
)
|
|
"""
|
|
|
|
super().__init__(input_numb_field=input_numb_field,
|
|
output_numb_field=output_numb_field,
|
|
filter_dim=filter_dim,
|
|
stride=stride,
|
|
model=model,
|
|
optimize=optimize,
|
|
no_overlap=no_overlap)
|
|
|
|
# integral routine
|
|
self._integral = Integral('discrete')
|
|
|
|
# create the network
|
|
self._net = self._spawn_networks(model)
|
|
|
|
# stride for continuous convolution overridden
|
|
self._stride = self._stride._stride_discrete
|
|
|
|
def _spawn_networks(self, model):
|
|
"""Private method to create a collection of kernels
|
|
|
|
:param model: a torch.nn.Module model in form of Object class
|
|
:type model: torch.nn.Module
|
|
:return: list of torch.nn.Module models
|
|
:rtype: torch.nn.ModuleList
|
|
|
|
"""
|
|
nets = []
|
|
if self._net is None:
|
|
for _ in range(self._input_numb_field * self._output_numb_field):
|
|
tmp = FeedForward(len(self._dim), 1)
|
|
nets.append(tmp)
|
|
else:
|
|
if not isinstance(model, object):
|
|
raise ValueError("Expected a python class inheriting"
|
|
" from torch.nn.Module")
|
|
|
|
for _ in range(self._input_numb_field * self._output_numb_field):
|
|
tmp = model()
|
|
if not isinstance(tmp, torch.nn.Module):
|
|
raise ValueError("The python class must be inherited from"
|
|
" torch.nn.Module. See the docstring for"
|
|
" an example.")
|
|
nets.append(tmp)
|
|
|
|
return torch.nn.ModuleList(nets)
|
|
|
|
def _extract_mapped_points(self, batch_idx, index, x):
|
|
"""Priviate method to extract mapped points in the filter
|
|
|
|
:param x: input tensor [channel x N x dim]
|
|
:type x: torch.tensor
|
|
:return: mapped points and indeces for each channel
|
|
:rtype: tuple(torch.tensor, list)
|
|
|
|
"""
|
|
mapped_points = []
|
|
indeces_channels = []
|
|
|
|
for stride_idx, current_stride in enumerate(self._stride):
|
|
|
|
# indeces of points falling into filter range
|
|
indeces = index[stride_idx][batch_idx]
|
|
|
|
# how many points for each channel fall into the filter?
|
|
numb_points_insiede = torch.sum(indeces, dim=-1).tolist()
|
|
|
|
# extracting points for each channel
|
|
# shape: [sum(numb_points_insiede), filter_dim + 1]
|
|
point_stride = x[indeces]
|
|
|
|
# mapping points in filter domain
|
|
map_points_(point_stride[..., :-1], current_stride)
|
|
|
|
# extracting points for each channel
|
|
point_stride_channel = point_stride.split(numb_points_insiede)
|
|
|
|
# appending in list for later use
|
|
mapped_points.append(point_stride_channel)
|
|
indeces_channels.append(numb_points_insiede)
|
|
|
|
# stacking input for passing to neural net
|
|
mapping = map(torch.cat, zip(*mapped_points))
|
|
stacked_input = tuple(mapping)
|
|
indeces_channels = tuple(zip(*indeces_channels))
|
|
|
|
return stacked_input, indeces_channels
|
|
|
|
def _find_index(self, X):
|
|
"""Private method to extract indeces for convolution.
|
|
|
|
:param X: input tensor, as in ContinuousConv2D docstring
|
|
:type X: torch.tensor
|
|
|
|
"""
|
|
# append the index for each stride
|
|
index = []
|
|
for _, current_stride in enumerate(self._stride):
|
|
|
|
tmp = check_point(X, current_stride, self._dim)
|
|
index.append(tmp)
|
|
|
|
# storing the index
|
|
self._index = index
|
|
|
|
def _make_grid_forward(self, X):
|
|
"""Private method to create forward convolution grid.
|
|
|
|
:param X: input tensor, as in ContinuousConv2D docstring
|
|
:type X: torch.tensor
|
|
|
|
"""
|
|
# filter dimension + number of points in output grid
|
|
filter_dim = len(self._dim)
|
|
number_points = len(self._stride)
|
|
|
|
# initialize the grid
|
|
grid = torch.zeros(size=(X.shape[0],
|
|
self._output_numb_field,
|
|
number_points,
|
|
filter_dim + 1),
|
|
device=X.device,
|
|
dtype=X.dtype)
|
|
grid[..., :-1] = (self._stride + self._dim * 0.5)
|
|
|
|
# saving the grid
|
|
self._grid = grid.detach()
|
|
|
|
def _make_grid_transpose(self, X):
|
|
"""Private method to create transpose convolution grid.
|
|
|
|
:param X: input tensor, as in ContinuousConv2D docstring
|
|
:type X: torch.tensor
|
|
|
|
"""
|
|
# initialize to all zeros
|
|
tmp = torch.zeros_like(X)
|
|
tmp[..., :-1] = X[..., :-1]
|
|
|
|
# save on tmp
|
|
self._grid_transpose = tmp
|
|
|
|
def _make_grid(self, X, type):
|
|
"""Private method to create convolution grid.
|
|
|
|
:param X: input tensor, as in ContinuousConv2D docstring
|
|
:type X: torch.tensor
|
|
:param type: type of convolution, ['forward', 'inverse'] the
|
|
possibilities
|
|
:type type: string
|
|
|
|
"""
|
|
# choose the type of convolution
|
|
if type == 'forward':
|
|
return self._make_grid_forward(X)
|
|
elif type == 'inverse':
|
|
self._make_grid_transpose(X)
|
|
else:
|
|
raise TypeError
|
|
|
|
def _initialize_convolution(self, X, type='forward'):
|
|
"""Private method to intialize the convolution.
|
|
The convolution is initialized by setting a grid and
|
|
calculate the index for finding the points inside the
|
|
filter.
|
|
|
|
:param X: input tensor, as in ContinuousConv2D docstring
|
|
:type X: torch.tensor
|
|
:param type: type of convolution, ['forward', 'inverse'] the
|
|
possibilities
|
|
:type type: string
|
|
"""
|
|
|
|
# variable for the convolution
|
|
self._make_grid(X, type)
|
|
|
|
# calculate the index
|
|
self._find_index(X)
|
|
|
|
def forward(self, X):
|
|
"""Forward pass in the layer
|
|
|
|
:param x: input data (input_numb_field x N x filter_dim)
|
|
:type x: torch.tensor
|
|
:return: feed forward convolution (output_numb_field x N x filter_dim)
|
|
:rtype: torch.tensor
|
|
"""
|
|
|
|
# initialize convolution
|
|
if self.training: # we choose what to do based on optimization
|
|
self._choose_initialization(X, type='forward')
|
|
|
|
else: # we always initialize on testing
|
|
self._initialize_convolution(X, 'forward')
|
|
|
|
# create convolutional array
|
|
conv = self._grid.clone().detach()
|
|
|
|
# total number of fields
|
|
tot_dim = self._output_numb_field * self._input_numb_field
|
|
|
|
for batch_idx, x in enumerate(X):
|
|
|
|
# extract mapped points
|
|
stacked_input, indeces_channels = self._extract_mapped_points(
|
|
batch_idx, self._index, x)
|
|
|
|
# compute the convolution
|
|
|
|
# storing intermidiate results for each channel convolution
|
|
res_tmp = []
|
|
# for each field
|
|
for idx_conv in range(tot_dim):
|
|
# index for each input field
|
|
idx = idx_conv % self._input_numb_field
|
|
# extract input for each channel
|
|
single_channel_input = stacked_input[idx]
|
|
# extract filter
|
|
net = self._net[idx_conv]
|
|
# calculate filter value
|
|
staked_output = net(single_channel_input[..., :-1])
|
|
# perform integral for all strides in one field
|
|
integral = self._integral(staked_output,
|
|
single_channel_input[..., -1],
|
|
indeces_channels[idx])
|
|
res_tmp.append(integral)
|
|
|
|
# stacking integral results
|
|
res_tmp = torch.stack(res_tmp)
|
|
|
|
# sum filters (for each input fields) in groups
|
|
# for different ouput fields
|
|
conv[batch_idx, ..., -1] = res_tmp.reshape(self._output_numb_field,
|
|
self._input_numb_field,
|
|
-1).sum(1)
|
|
return conv
|
|
|
|
def transpose_no_overlap(self, integrals, X):
|
|
"""Transpose pass in the layer for no-overlapping filters
|
|
|
|
:param integrals: Weights for the transpose convolution. Shape
|
|
[B x N_in x N]
|
|
where B is the batch_size, N_in is the number of input
|
|
fields, N the number of points in the mesh, D the dimension
|
|
of the problem.
|
|
:type integral: torch.tensor
|
|
:param X: Input data. Expect tensor of shape
|
|
[B x N_in x M x D] where B is the batch_size,
|
|
N_in is the number of input fields, M the number of points
|
|
in the mesh, D the dimension of the problem. Note, last column
|
|
:type X: torch.tensor
|
|
:return: Feed forward transpose convolution. Tensor of shape
|
|
[B x N_out x N] where B is the batch_size,
|
|
N_out is the number of output fields, N the number of points
|
|
in the mesh, D the dimension of the problem.
|
|
:rtype: torch.tensor
|
|
|
|
.. note::
|
|
This function is automatically called when `.transpose()`
|
|
method is used and `no_overlap=True`
|
|
"""
|
|
|
|
# initialize convolution
|
|
if self.training: # we choose what to do based on optimization
|
|
self._choose_initialization(X, type='inverse')
|
|
|
|
else: # we always initialize on testing
|
|
self._initialize_convolution(X, 'inverse')
|
|
|
|
# initialize grid
|
|
X = self._grid_transpose.clone().detach()
|
|
conv_transposed = self._grid_transpose.clone().detach()
|
|
|
|
# total number of dim
|
|
tot_dim = self._input_numb_field * self._output_numb_field
|
|
|
|
for batch_idx, x in enumerate(X):
|
|
|
|
# extract mapped points
|
|
stacked_input, indeces_channels = self._extract_mapped_points(
|
|
batch_idx, self._index, x)
|
|
|
|
# compute the transpose convolution
|
|
|
|
# total number of fields
|
|
res_tmp = []
|
|
|
|
# for each field
|
|
for idx_conv in range(tot_dim):
|
|
# index for each output field
|
|
idx = idx_conv % self._output_numb_field
|
|
# index for each input field
|
|
idx_in = idx_conv % self._input_numb_field
|
|
# extract input for each field
|
|
single_channel_input = stacked_input[idx]
|
|
rep_idx = torch.tensor(indeces_channels[idx])
|
|
integral = integrals[batch_idx,
|
|
idx_in, :].repeat_interleave(rep_idx)
|
|
# extract filter
|
|
net = self._net[idx_conv]
|
|
# perform transpose convolution for all strides in one field
|
|
staked_output = net(single_channel_input[..., :-1]).flatten()
|
|
integral = staked_output * integral
|
|
res_tmp.append(integral)
|
|
|
|
# stacking integral results and sum
|
|
# filters (for each input fields) in groups
|
|
# for different output fields
|
|
res_tmp = torch.stack(res_tmp).reshape(self._input_numb_field,
|
|
self._output_numb_field,
|
|
-1).sum(0)
|
|
conv_transposed[batch_idx, ..., -1] = res_tmp
|
|
|
|
return conv_transposed
|
|
|
|
def transpose_overlap(self, integrals, X):
|
|
"""Transpose pass in the layer for overlapping filters
|
|
|
|
:param integrals: Weights for the transpose convolution. Shape
|
|
[B x N_in x N]
|
|
where B is the batch_size, N_in is the number of input
|
|
fields, N the number of points in the mesh, D the dimension
|
|
of the problem.
|
|
:type integral: torch.tensor
|
|
:param X: Input data. Expect tensor of shape
|
|
[B x N_in x M x D] where B is the batch_size,
|
|
N_in is the number of input fields, M the number of points
|
|
in the mesh, D the dimension of the problem. Note, last column
|
|
:type X: torch.tensor
|
|
:return: Feed forward transpose convolution. Tensor of shape
|
|
[B x N_out x N] where B is the batch_size,
|
|
N_out is the number of output fields, N the number of points
|
|
in the mesh, D the dimension of the problem.
|
|
:rtype: torch.tensor
|
|
|
|
.. note:: This function is automatically called when `.transpose()`
|
|
method is used and `no_overlap=False`
|
|
"""
|
|
|
|
# initialize convolution
|
|
if self.training: # we choose what to do based on optimization
|
|
self._choose_initialization(X, type='inverse')
|
|
|
|
else: # we always initialize on testing
|
|
self._initialize_convolution(X, 'inverse')
|
|
|
|
# initialize grid
|
|
X = self._grid_transpose.clone().detach()
|
|
conv_transposed = self._grid_transpose.clone().detach()
|
|
|
|
# list to iterate for calculating nn output
|
|
tmp = [i for i in range(self._output_numb_field)]
|
|
iterate_conv = [item for item in tmp for _ in range(
|
|
self._input_numb_field)]
|
|
|
|
for batch_idx, x in enumerate(X):
|
|
|
|
# accumulator for the convolution on different batches
|
|
accumulator_batch = torch.zeros(
|
|
size=(self._grid_transpose.shape[1],
|
|
self._grid_transpose.shape[2]),
|
|
requires_grad=True,
|
|
device=X.device,
|
|
dtype=X.dtype).clone()
|
|
|
|
for stride_idx, current_stride in enumerate(self._stride):
|
|
# indeces of points falling into filter range
|
|
indeces = self._index[stride_idx][batch_idx]
|
|
|
|
# number of points for each channel
|
|
numb_pts_channel = tuple(indeces.sum(dim=-1))
|
|
|
|
# extracting points for each channel
|
|
point_stride = x[indeces]
|
|
|
|
# if no points to upsample we just skip
|
|
if point_stride.nelement() == 0:
|
|
continue
|
|
|
|
# mapping points in filter domain
|
|
map_points_(point_stride[..., :-1], current_stride)
|
|
|
|
# input points for kernels
|
|
# we split for extracting number of points for each channel
|
|
nn_input_pts = point_stride[..., :-1].split(numb_pts_channel)
|
|
|
|
# accumulate partial convolution results for each field
|
|
res_tmp = []
|
|
|
|
# for each channel field compute transpose convolution
|
|
for idx_conv, idx_channel_out in enumerate(iterate_conv):
|
|
|
|
# index for input channels
|
|
idx_channel_in = idx_conv % self._input_numb_field
|
|
|
|
# extract filter
|
|
net = self._net[idx_conv]
|
|
|
|
# calculate filter value
|
|
staked_output = net(nn_input_pts[idx_channel_out])
|
|
|
|
# perform integral for all strides in one field
|
|
integral = staked_output * integrals[batch_idx,
|
|
idx_channel_in,
|
|
stride_idx]
|
|
# append results
|
|
res_tmp.append(integral.flatten())
|
|
|
|
# computing channel sum
|
|
channel_sum = []
|
|
start = 0
|
|
for _ in range(self._output_numb_field):
|
|
tmp = res_tmp[start:start + self._input_numb_field]
|
|
tmp = torch.vstack(tmp).sum(dim=0)
|
|
channel_sum.append(tmp)
|
|
start += self._input_numb_field
|
|
|
|
# accumulate the results
|
|
accumulator_batch[indeces] += torch.hstack(channel_sum)
|
|
|
|
# save results of accumulation for each batch
|
|
conv_transposed[batch_idx, ..., -1] = accumulator_batch
|
|
|
|
return conv_transposed
|