Files
PINA/tests/test_operators.py
2023-11-17 09:51:29 +01:00

54 lines
1.8 KiB
Python

import torch
import pytest
from pina import LabelTensor
from pina.operators import grad, div, laplacian
def func_vec(x):
return x**2
def func_scalar(x):
print('X')
x_ = x.extract(['x'])
y_ = x.extract(['y'])
mu_ = x.extract(['mu'])
return x_**2 + y_**2 + mu_**3
data = torch.rand((20, 3), requires_grad=True)
inp = LabelTensor(data, ['x', 'y', 'mu'])
labels = ['a', 'b', 'c']
tensor_v = LabelTensor(func_vec(inp), labels)
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])
def test_grad_scalar_output():
grad_tensor_s = grad(tensor_s, inp)
assert grad_tensor_s.shape == inp.shape
assert grad_tensor_s.labels == [f'd{tensor_s.labels[0]}d{i}' for i in inp.labels]
grad_tensor_s = grad(tensor_s, inp, d=['x', 'y'])
assert grad_tensor_s.shape == (inp.shape[0], 2)
assert grad_tensor_s.labels == [f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y']]
def test_grad_vector_output():
grad_tensor_v = grad(tensor_v, inp)
assert grad_tensor_v.shape == (20, 9)
grad_tensor_v = grad(tensor_v, inp, d=['x', 'mu'])
assert grad_tensor_v.shape == (inp.shape[0], 6)
def test_div_vector_output():
grad_tensor_v = div(tensor_v, inp)
assert grad_tensor_v.shape == (20, 1)
grad_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'mu'])
assert grad_tensor_v.shape == (inp.shape[0], 1)
def test_laplacian_scalar_output():
laplace_tensor_v = laplacian(tensor_s, inp, components=['a'], d=['x', 'y'])
assert laplace_tensor_v.shape == tensor_s.shape
def test_laplacian_vector_output():
laplace_tensor_v = laplacian(tensor_v, inp)
assert laplace_tensor_v.shape == tensor_v.shape
laplace_tensor_v = laplacian(tensor_v, inp, components=['a', 'b'], d=['x', 'y'])
assert laplace_tensor_v.shape == tensor_v.extract(['a', 'b']).shape