Files
PINA/examples/problems/parametric_elliptic_optimal_control.py
Dario Coscia ee39b39805 Examples update for v0.1 (#206)
* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
2023-11-17 09:51:29 +01:00

80 lines
3.3 KiB
Python

""" Poisson OCP problem. """
from pina import Condition
from pina.geometry import CartesianDomain
from pina.equation import SystemEquation, FixedValue
from pina.problem import SpatialProblem, ParametricProblem
from pina.operators import laplacian
# ===================================================== #
# #
# This script implements the two dimensional #
# Parametric Elliptic Optimal Control problem. #
# The ParametricEllipticOptimalControl class is #
# inherited from TimeDependentProblem, SpatialProblem #
# and we denote: #
# u --> field variable #
# p --> field variable #
# y --> field variable #
# x1, x2 --> spatial variables #
# mu, alpha --> problem parameters #
# #
# More info in https://arxiv.org/pdf/2110.13530.pdf #
# Section 4.2 of the article #
# ===================================================== #
class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem):
# setting spatial variables ranges
xmin, xmax, ymin, ymax = -1, 1, -1, 1
x_range = [xmin, xmax]
y_range = [ymin, ymax]
# setting parameters range
amin, amax = 0.0001, 1
mumin, mumax = 0.5, 3
mu_range = [mumin, mumax]
a_range = [amin, amax]
# setting field variables
output_variables = ['u', 'p', 'y']
# setting spatial and parameter domain
spatial_domain = CartesianDomain({'x1': x_range, 'x2': y_range})
parameter_domain = CartesianDomain({'mu': mu_range, 'alpha': a_range})
# equation terms as in https://arxiv.org/pdf/2110.13530.pdf
def term1(input_, output_):
laplace_p = laplacian(output_, input_, components=['p'], d=['x1', 'x2'])
return output_.extract(['y']) - input_.extract(['mu']) - laplace_p
def term2(input_, output_):
laplace_y = laplacian(output_, input_, components=['y'], d=['x1', 'x2'])
return - laplace_y - output_.extract(['u'])
def fixed_y(input_, output_):
return output_.extract(['y'])
def fixed_p(input_, output_):
return output_.extract(['p'])
# setting problem condition formulation
conditions = {
'gamma1': Condition(
location=CartesianDomain({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}),
equation=SystemEquation([fixed_y, fixed_p])),
'gamma2': Condition(
location=CartesianDomain({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}),
equation=SystemEquation([fixed_y, fixed_p])),
'gamma3': Condition(
location=CartesianDomain({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
equation=SystemEquation([fixed_y, fixed_p])),
'gamma4': Condition(
location=CartesianDomain({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
equation=SystemEquation([fixed_y, fixed_p])),
'D': Condition(
location=CartesianDomain(
{'x1': x_range, 'x2': y_range,
'mu': mu_range, 'alpha': a_range
}),
equation=SystemEquation([term1, term2])),
}