Files
PINA/tests/test_solvers/test_garom.py
Nicola Demo a899327de1 fix tests
2025-03-19 17:46:34 +01:00

168 lines
6.1 KiB
Python

import torch
from pina.problem import AbstractProblem
from pina import Condition, LabelTensor
from pina.solvers import GAROM
from pina.trainer import Trainer
import torch.nn as nn
import matplotlib.tri as tri
# def func(x, mu1, mu2):
# import torch
# x_m1 = (x[:, 0] - mu1).pow(2)
# x_m2 = (x[:, 1] - mu2).pow(2)
# norm = x[:, 0]**2 + x[:, 1]**2
# return torch.exp(-(x_m1 + x_m2))
# class ParametricGaussian(AbstractProblem):
# output_variables = [f'u_{i}' for i in range(900)]
# # params
# xx = torch.linspace(-1, 1, 20)
# yy = xx
# params = LabelTensor(torch.cartesian_prod(xx, yy), labels=['mu1', 'mu2'])
# # define domain
# x = torch.linspace(-1, 1, 30)
# domain = torch.cartesian_prod(x, x)
# triang = tri.Triangulation(domain[:, 0], domain[:, 1])
# sol = []
# for p in params:
# sol.append(func(domain, p[0], p[1]))
# snapshots = LabelTensor(torch.stack(sol), labels=output_variables)
# # define conditions
# conditions = {
# 'data': Condition(input_points=params, output_points=snapshots)
# }
# # simple Generator Network
# class Generator(nn.Module):
# def __init__(self,
# input_dimension,
# parameters_dimension,
# noise_dimension,
# activation=torch.nn.SiLU):
# super().__init__()
# self._noise_dimension = noise_dimension
# self._activation = activation
# self.model = torch.nn.Sequential(
# torch.nn.Linear(6 * self._noise_dimension, input_dimension // 6),
# self._activation(),
# torch.nn.Linear(input_dimension // 6, input_dimension // 3),
# self._activation(),
# torch.nn.Linear(input_dimension // 3, input_dimension))
# self.condition = torch.nn.Sequential(
# torch.nn.Linear(parameters_dimension, 2 * self._noise_dimension),
# self._activation(),
# torch.nn.Linear(2 * self._noise_dimension,
# 5 * self._noise_dimension))
# def forward(self, param):
# # uniform sampling in [-1, 1]
# z = torch.rand(size=(param.shape[0], self._noise_dimension),
# device=param.device,
# dtype=param.dtype,
# requires_grad=True)
# z = 2. * z - 1.
# # conditioning by concatenation of mapped parameters
# input_ = torch.cat((z, self.condition(param)), dim=-1)
# out = self.model(input_)
# return out
# # Simple Discriminator Network
# class Discriminator(nn.Module):
# def __init__(self,
# input_dimension,
# parameter_dimension,
# hidden_dimension,
# activation=torch.nn.ReLU):
# super().__init__()
# self._activation = activation
# self.encoding = torch.nn.Sequential(
# torch.nn.Linear(input_dimension, input_dimension // 3),
# self._activation(),
# torch.nn.Linear(input_dimension // 3, input_dimension // 6),
# self._activation(),
# torch.nn.Linear(input_dimension // 6, hidden_dimension))
# self.decoding = torch.nn.Sequential(
# torch.nn.Linear(2 * hidden_dimension, input_dimension // 6),
# self._activation(),
# torch.nn.Linear(input_dimension // 6, input_dimension // 3),
# self._activation(),
# torch.nn.Linear(input_dimension // 3, input_dimension),
# )
# self.condition = torch.nn.Sequential(
# torch.nn.Linear(parameter_dimension, hidden_dimension // 2),
# self._activation(),
# torch.nn.Linear(hidden_dimension // 2, hidden_dimension))
# def forward(self, data):
# x, condition = data
# encoding = self.encoding(x)
# conditioning = torch.cat((encoding, self.condition(condition)), dim=-1)
# decoding = self.decoding(conditioning)
# return decoding
# problem = ParametricGaussian()
# def test_constructor():
# GAROM(problem=problem,
# generator=Generator(input_dimension=900,
# parameters_dimension=2,
# noise_dimension=12),
# discriminator=Discriminator(input_dimension=900,
# parameter_dimension=2,
# hidden_dimension=64))
# def test_train_cpu():
# solver = GAROM(problem=problem,
# generator=Generator(input_dimension=900,
# parameters_dimension=2,
# noise_dimension=12),
# discriminator=Discriminator(input_dimension=900,
# parameter_dimension=2,
# hidden_dimension=64))
# trainer = Trainer(solver=solver, max_epochs=4, accelerator='cpu', batch_size=20)
# trainer.train()
# def test_sample():
# solver = GAROM(problem=problem,
# generator=Generator(input_dimension=900,
# parameters_dimension=2,
# noise_dimension=12),
# discriminator=Discriminator(input_dimension=900,
# parameter_dimension=2,
# hidden_dimension=64))
# solver.sample(problem.params)
# assert solver.sample(problem.params).shape == problem.snapshots.shape
# def test_forward():
# solver = GAROM(problem=problem,
# generator=Generator(input_dimension=900,
# parameters_dimension=2,
# noise_dimension=12),
# discriminator=Discriminator(input_dimension=900,
# parameter_dimension=2,
# hidden_dimension=64))
# solver(problem.params, mc_steps=100, variance=True)
# assert solver(problem.params).shape == problem.snapshots.shape