135 lines
4.7 KiB
Python
135 lines
4.7 KiB
Python
"""
|
|
This module provide basic data management functionalities
|
|
"""
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
from abc import abstractmethod
|
|
from torch_geometric.data import Batch
|
|
|
|
|
|
class PinaDatasetFactory:
|
|
"""
|
|
Factory class for the PINA dataset. Depending on the type inside the
|
|
conditions it creates a different dataset object:
|
|
- PinaTensorDataset for torch.Tensor
|
|
- PinaGraphDataset for list of torch_geometric.data.Data objects
|
|
"""
|
|
|
|
def __new__(cls, conditions_dict, **kwargs):
|
|
if len(conditions_dict) == 0:
|
|
raise ValueError('No conditions provided')
|
|
if all([isinstance(v['input_points'], torch.Tensor) for v
|
|
in conditions_dict.values()]):
|
|
return PinaTensorDataset(conditions_dict, **kwargs)
|
|
elif all([isinstance(v['input_points'], list) for v
|
|
in conditions_dict.values()]):
|
|
return PinaGraphDataset(conditions_dict, **kwargs)
|
|
raise ValueError('Conditions must be either torch.Tensor or list of Data '
|
|
'objects.')
|
|
|
|
|
|
class PinaDataset(Dataset):
|
|
"""
|
|
Abstract class for the PINA dataset
|
|
"""
|
|
|
|
def __init__(self, conditions_dict, max_conditions_lengths):
|
|
self.conditions_dict = conditions_dict
|
|
self.max_conditions_lengths = max_conditions_lengths
|
|
self.conditions_length = {k: len(v['input_points']) for k, v in
|
|
self.conditions_dict.items()}
|
|
self.length = max(self.conditions_length.values())
|
|
|
|
def _get_max_len(self):
|
|
max_len = 0
|
|
for condition in self.conditions_dict.values():
|
|
max_len = max(max_len, len(condition['input_points']))
|
|
return max_len
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
@abstractmethod
|
|
def __getitem__(self, item):
|
|
pass
|
|
|
|
|
|
class PinaTensorDataset(PinaDataset):
|
|
def __init__(self, conditions_dict, max_conditions_lengths,
|
|
automatic_batching):
|
|
super().__init__(conditions_dict, max_conditions_lengths)
|
|
|
|
if automatic_batching:
|
|
self._getitem_func = self._getitem_int
|
|
else:
|
|
self._getitem_func = self._getitem_list
|
|
|
|
def _getitem_int(self, idx):
|
|
return {
|
|
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
|
|
in v.keys()} for k, v in self.conditions_dict.items()
|
|
}
|
|
|
|
def fetch_from_idx_list(self, idx):
|
|
to_return_dict = {}
|
|
for condition, data in self.conditions_dict.items():
|
|
cond_idx = idx[:self.max_conditions_lengths[condition]]
|
|
condition_len = self.conditions_length[condition]
|
|
if self.length > condition_len:
|
|
cond_idx = [idx % condition_len for idx in cond_idx]
|
|
to_return_dict[condition] = {k: v[cond_idx]
|
|
for k, v in data.items()}
|
|
return to_return_dict
|
|
|
|
@staticmethod
|
|
def _getitem_list(idx):
|
|
return idx
|
|
|
|
def get_all_data(self):
|
|
index = [i for i in range(len(self))]
|
|
return self.fetch_from_idx_list(index)
|
|
|
|
def __getitem__(self, idx):
|
|
return self._getitem_func(idx)
|
|
|
|
|
|
class PinaGraphDataset(PinaDataset):
|
|
|
|
def __init__(self, conditions_dict, max_conditions_lengths,
|
|
automatic_batching):
|
|
super().__init__(conditions_dict, max_conditions_lengths)
|
|
if automatic_batching:
|
|
self._getitem_func = self._getitem_int
|
|
else:
|
|
self._getitem_func = self._getitem_list
|
|
|
|
def fetch_from_idx_list(self, idx):
|
|
to_return_dict = {}
|
|
for condition, data in self.conditions_dict.items():
|
|
cond_idx = idx[:self.max_conditions_lengths[condition]]
|
|
condition_len = self.conditions_length[condition]
|
|
if self.length > condition_len:
|
|
cond_idx = [idx % condition_len for idx in cond_idx]
|
|
to_return_dict[condition] = {k: Batch.from_data_list([v[i]
|
|
for i in cond_idx])
|
|
if isinstance(v, list)
|
|
else v[cond_idx].reshape(-1, *v[cond_idx].shape[2:])
|
|
for k, v in data.items()
|
|
}
|
|
return to_return_dict
|
|
|
|
def _getitem_list(self, idx):
|
|
return idx
|
|
|
|
def _getitem_int(self, idx):
|
|
return {
|
|
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
|
|
in v.keys()} for k, v in self.conditions_dict.items()
|
|
}
|
|
|
|
def get_all_data(self):
|
|
index = [i for i in range(len(self))]
|
|
return self.fetch_from_idx_list(index)
|
|
|
|
def __getitem__(self, idx):
|
|
return self._getitem_func(idx) |