Files
PINA/tests/test_messagepassing/test_radial_field_network_block.py
Dario Coscia 7bf7d34d0f Dev Update (#582)
* Fix adaptive refinement (#571)


---------

Co-authored-by: Dario Coscia <93731561+dario-coscia@users.noreply.github.com>

* Remove collector

* Fixes

* Fixes

* rm unnecessary comment

* fix advection (#581)

* Fix tutorial .html link (#580)

* fix problem data collection for v0.1 (#584)

* Message Passing Module (#516)

* add deep tensor network block

* add interaction network block

* add radial field network block

* add schnet block

* add equivariant network block

* fix + tests + doc files

* fix egnn + equivariance/invariance tests

Co-authored-by: Dario Coscia <dariocos99@gmail.com>

---------

Co-authored-by: giovanni <giovanni.canali98@yahoo.it>
Co-authored-by: AleDinve <giuseppealessio.d@student.unisi.it>

* add type checker (#527)

---------

Co-authored-by: Filippo Olivo <filippo@filippoolivo.com>
Co-authored-by: Giovanni Canali <115086358+GiovanniCanali@users.noreply.github.com>
Co-authored-by: giovanni <giovanni.canali98@yahoo.it>
Co-authored-by: AleDinve <giuseppealessio.d@student.unisi.it>
2025-06-13 17:34:37 +02:00

93 lines
2.3 KiB
Python

import pytest
import torch
from pina.model.block.message_passing import RadialFieldNetworkBlock
# Data for testing
x = torch.rand(10, 3)
edge_index = torch.randint(0, 10, (2, 20))
@pytest.mark.parametrize("node_feature_dim", [1, 3])
def test_constructor(node_feature_dim):
RadialFieldNetworkBlock(
node_feature_dim=node_feature_dim,
hidden_dim=64,
n_layers=2,
)
# Should fail if node_feature_dim is negative
with pytest.raises(AssertionError):
RadialFieldNetworkBlock(
node_feature_dim=-1,
hidden_dim=64,
n_layers=2,
)
# Should fail if hidden_dim is negative
with pytest.raises(AssertionError):
RadialFieldNetworkBlock(
node_feature_dim=node_feature_dim,
hidden_dim=-1,
n_layers=2,
)
# Should fail if n_layers is negative
with pytest.raises(AssertionError):
RadialFieldNetworkBlock(
node_feature_dim=node_feature_dim,
hidden_dim=64,
n_layers=-1,
)
def test_forward():
model = RadialFieldNetworkBlock(
node_feature_dim=x.shape[1],
hidden_dim=64,
n_layers=2,
)
output_ = model(edge_index=edge_index, x=x)
assert output_.shape == x.shape
def test_backward():
model = RadialFieldNetworkBlock(
node_feature_dim=x.shape[1],
hidden_dim=64,
n_layers=2,
)
output_ = model(edge_index=edge_index, x=x.requires_grad_())
loss = torch.mean(output_)
loss.backward()
assert x.grad.shape == x.shape
def test_equivariance():
# Graph to be fully connected and undirected
edge_index = torch.combinations(torch.arange(x.shape[0]), r=2).T
edge_index = torch.cat([edge_index, edge_index.flip(0)], dim=1)
# Random rotation (det(rotation) should be 1)
rotation = torch.linalg.qr(torch.rand(x.shape[-1], x.shape[-1])).Q
if torch.det(rotation) < 0:
rotation[:, 0] *= -1
# Random translation
translation = torch.rand(1, x.shape[-1])
model = RadialFieldNetworkBlock(node_feature_dim=x.shape[1]).eval()
pos1 = model(edge_index=edge_index, x=x)
pos2 = model(edge_index=edge_index, x=x @ rotation.T + translation)
# Transform model output
pos1_transformed = (pos1 @ rotation.T) + translation
assert torch.allclose(pos2, pos1_transformed, atol=1e-5)