197 lines
6.3 KiB
Python
197 lines
6.3 KiB
Python
""" Module for SupervisedSolver """
|
|
|
|
import torch
|
|
from torch.nn.modules.loss import _Loss
|
|
from ..optim import TorchOptimizer, TorchScheduler
|
|
from .solver import SolverInterface
|
|
from ..label_tensor import LabelTensor
|
|
from ..utils import check_consistency
|
|
from ..loss.loss_interface import LossInterface
|
|
|
|
|
|
class SupervisedSolver(SolverInterface):
|
|
r"""
|
|
SupervisedSolver solver class. This class implements a SupervisedSolver,
|
|
using a user specified ``model`` to solve a specific ``problem``.
|
|
|
|
The Supervised Solver class aims to find
|
|
a map between the input :math:`\mathbf{s}:\Omega\rightarrow\mathbb{R}^m`
|
|
and the output :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`. The input
|
|
can be discretised in space (as in :obj:`~pina.solvers.rom.ROMe2eSolver`),
|
|
or not (e.g. when training Neural Operators).
|
|
|
|
Given a model :math:`\mathcal{M}`, the following loss function is
|
|
minimized during training:
|
|
|
|
.. math::
|
|
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
|
\mathcal{L}(\mathbf{u}_i - \mathcal{M}(\mathbf{v}_i))
|
|
|
|
where :math:`\mathcal{L}` is a specific loss function,
|
|
default Mean Square Error:
|
|
|
|
.. math::
|
|
\mathcal{L}(v) = \| v \|^2_2.
|
|
|
|
In this context :math:`\mathbf{u}_i` and :math:`\mathbf{v}_i` means that
|
|
we are seeking to approximate multiple (discretised) functions given
|
|
multiple (discretised) input functions.
|
|
"""
|
|
accepted_condition_types = ['supervised']
|
|
__name__ = 'SupervisedSolver'
|
|
|
|
def __init__(
|
|
self,
|
|
problem,
|
|
model,
|
|
loss=None,
|
|
optimizer=None,
|
|
scheduler=None,
|
|
extra_features=None
|
|
):
|
|
"""
|
|
:param AbstractProblem problem: The formualation of the problem.
|
|
:param torch.nn.Module model: The neural network model to use.
|
|
:param torch.nn.Module loss: The loss function used as minimizer,
|
|
default :class:`torch.nn.MSELoss`.
|
|
:param torch.nn.Module extra_features: The additional input
|
|
features to use as augmented input.
|
|
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
|
use; default is :class:`torch.optim.Adam`.
|
|
:param torch.optim.LRScheduler scheduler: Learning
|
|
rate scheduler.
|
|
"""
|
|
if loss is None:
|
|
loss = torch.nn.MSELoss()
|
|
|
|
if optimizer is None:
|
|
optimizer = TorchOptimizer(torch.optim.Adam, lr=0.001)
|
|
|
|
if scheduler is None:
|
|
scheduler = TorchScheduler(
|
|
torch.optim.lr_scheduler.ConstantLR)
|
|
|
|
super().__init__(
|
|
models=model,
|
|
problem=problem,
|
|
optimizers=optimizer,
|
|
schedulers=scheduler,
|
|
extra_features=extra_features
|
|
)
|
|
|
|
# check consistency
|
|
check_consistency(loss, (LossInterface, _Loss), subclass=False)
|
|
self._loss = loss
|
|
self._model = self._pina_models[0]
|
|
self._optimizer = self._pina_optimizers[0]
|
|
self._scheduler = self._pina_schedulers[0]
|
|
|
|
def forward(self, x):
|
|
"""Forward pass implementation for the solver.
|
|
|
|
:param torch.Tensor x: Input tensor.
|
|
:return: Solver solution.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
|
|
output = self._model(x)
|
|
|
|
output.labels = self.problem.output_variables
|
|
return output
|
|
|
|
def configure_optimizers(self):
|
|
"""Optimizer configuration for the solver.
|
|
|
|
:return: The optimizers and the schedulers
|
|
:rtype: tuple(list, list)
|
|
"""
|
|
self._optimizer.hook(self._model.parameters())
|
|
self._scheduler.hook(self._optimizer)
|
|
return (
|
|
[self._optimizer.optimizer_instance],
|
|
[self._scheduler.scheduler_instance]
|
|
)
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
"""Solver training step.
|
|
|
|
:param batch: The batch element in the dataloader.
|
|
:type batch: tuple
|
|
:param batch_idx: The batch index.
|
|
:type batch_idx: int
|
|
:return: The sum of the loss functions.
|
|
:rtype: LabelTensor
|
|
"""
|
|
condition_idx = batch.supervised.condition_indices
|
|
|
|
for condition_id in range(condition_idx.min(), condition_idx.max() + 1):
|
|
|
|
condition_name = self._dataloader.condition_names[condition_id]
|
|
condition = self.problem.conditions[condition_name]
|
|
pts = batch.supervised.input_points
|
|
out = batch.supervised.output_points
|
|
if condition_name not in self.problem.conditions:
|
|
raise RuntimeError("Something wrong happened.")
|
|
|
|
# for data driven mode
|
|
if not hasattr(condition, "output_points"):
|
|
raise NotImplementedError(
|
|
f"{type(self).__name__} works only in data-driven mode."
|
|
)
|
|
|
|
output_pts = out[condition_idx == condition_id]
|
|
input_pts = pts[condition_idx == condition_id]
|
|
|
|
input_pts.labels = pts.labels
|
|
output_pts.labels = out.labels
|
|
|
|
loss = (
|
|
self.loss_data(input_pts=input_pts, output_pts=output_pts)
|
|
)
|
|
loss = loss.as_subclass(torch.Tensor)
|
|
|
|
self.log("mean_loss", float(loss), prog_bar=True, logger=True)
|
|
return loss
|
|
|
|
def loss_data(self, input_pts, output_pts):
|
|
"""
|
|
The data loss for the Supervised solver. It computes the loss between
|
|
the network output against the true solution. This function
|
|
should not be override if not intentionally.
|
|
|
|
:param LabelTensor input_pts: The input to the neural networks.
|
|
:param LabelTensor output_pts: The true solution to compare the
|
|
network solution.
|
|
:return: The residual loss averaged on the input coordinates
|
|
:rtype: torch.Tensor
|
|
"""
|
|
return self._loss(self.forward(input_pts), output_pts)
|
|
|
|
@property
|
|
def scheduler(self):
|
|
"""
|
|
Scheduler for training.
|
|
"""
|
|
return self._scheduler
|
|
|
|
@property
|
|
def optimizer(self):
|
|
"""
|
|
Optimizer for training.
|
|
"""
|
|
return self._optimizer
|
|
|
|
@property
|
|
def model(self):
|
|
"""
|
|
Neural network for training.
|
|
"""
|
|
return self._model
|
|
|
|
@property
|
|
def loss(self):
|
|
"""
|
|
Loss for training.
|
|
"""
|
|
return self._loss
|