Files
PINA/tests/test_dataset.py

162 lines
6.3 KiB
Python

import math
import torch
from pina.data import SamplePointDataset, SupervisedDataset, PinaDataModule, UnsupervisedDataset, unsupervised_dataset
from pina.data import PinaDataLoader
from pina import LabelTensor, Condition
from pina.equation import Equation
from pina.domain import CartesianDomain
from pina.problem import SpatialProblem
from pina.operators import laplacian
from pina.equation.equation_factory import FixedValue
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1': Condition(
domain=CartesianDomain({'x': [0, 1], 'y': 1}),
equation=FixedValue(0.0)),
'gamma2': Condition(
domain=CartesianDomain({'x': [0, 1], 'y': 0}),
equation=FixedValue(0.0)),
'gamma3': Condition(
domain=CartesianDomain({'x': 1, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'gamma4': Condition(
domain=CartesianDomain({'x': 0, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'D': Condition(
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
equation=my_laplace),
'data': Condition(
input_points=in_,
output_points=out_),
'data2': Condition(
input_points=in2_,
output_points=out2_),
'unsupervised': Condition(
input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']),
conditional_variables=LabelTensor(torch.ones(size=(45, 1)), ['alpha']),
),
'unsupervised2': Condition(
input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']),
conditional_variables=LabelTensor(torch.ones(size=(90, 1)), ['alpha']),
)
}
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
poisson = Poisson()
poisson.discretise_domain(10, 'grid', locations=boundaries)
def test_sample():
sample_dataset = SamplePointDataset(poisson, device='cpu')
assert len(sample_dataset) == 140
assert sample_dataset.input_points.shape == (140, 2)
assert sample_dataset.input_points.labels == ['x', 'y']
assert sample_dataset.condition_indices.dtype == torch.uint8
assert sample_dataset.condition_indices.max() == torch.tensor(4)
assert sample_dataset.condition_indices.min() == torch.tensor(0)
def test_data():
dataset = SupervisedDataset(poisson, device='cpu')
assert len(dataset) == 61
assert dataset['input_points'].shape == (61, 2)
assert dataset.input_points.shape == (61, 2)
assert dataset['input_points'].labels == ['x', 'y']
assert dataset.input_points.labels == ['x', 'y']
assert dataset['input_points', 3:].shape == (58, 2)
assert dataset[3:][1].labels == ['u']
assert dataset.output_points.shape == (61, 1)
assert dataset.output_points.labels == ['u']
assert dataset.condition_indices.dtype == torch.uint8
assert dataset.condition_indices.max() == torch.tensor(1)
assert dataset.condition_indices.min() == torch.tensor(0)
def test_unsupervised():
dataset = UnsupervisedDataset(poisson, device='cpu')
assert len(dataset) == 135
assert dataset.input_points.shape == (135, 2)
assert dataset.input_points.labels == ['x', 'y']
assert dataset.input_points[3:].shape == (132, 2)
assert dataset.conditional_variables.shape == (135, 1)
assert dataset.conditional_variables.labels == ['alpha']
assert dataset.condition_indices.dtype == torch.uint8
assert dataset.condition_indices.max() == torch.tensor(1)
assert dataset.condition_indices.min() == torch.tensor(0)
def test_data_module():
data_module = PinaDataModule(poisson, device='cpu')
data_module.setup()
loader = data_module.train_dataloader()
assert isinstance(loader, PinaDataLoader)
assert isinstance(loader, PinaDataLoader)
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False)
data_module.setup()
loader = data_module.train_dataloader()
assert len(loader) == 24
for i in loader:
assert len(i) <= 10
len_ref = sum([math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
len_real = sum([len(dataset) for dataset in data_module.splits['train'].values()])
assert len_ref == len_real
supervised_dataset = SupervisedDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[supervised_dataset])
data_module.setup()
loader = data_module.train_dataloader()
for batch in loader:
assert len(batch) <= 10
physics_dataset = SamplePointDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[physics_dataset])
data_module.setup()
loader = data_module.train_dataloader()
for batch in loader:
assert len(batch) <= 10
unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[unsupervised_dataset])
data_module.setup()
loader = data_module.train_dataloader()
for batch in loader:
assert len(batch) <= 10
def test_loader():
data_module = PinaDataModule(poisson, device='cpu', batch_size=10)
data_module.setup()
loader = data_module.train_dataloader()
assert isinstance(loader, PinaDataLoader)
assert len(loader) == 24
for i in loader:
assert len(i) <= 10
assert i.supervised.input_points.labels == ['x', 'y']
assert i.physics.input_points.labels == ['x', 'y']
assert i.unsupervised.input_points.labels == ['x', 'y']
assert i.supervised.input_points.requires_grad == True
assert i.physics.input_points.requires_grad == True
assert i.unsupervised.input_points.requires_grad == True
test_loader()