Files
PINA/pina/adaptive_functions/adaptive_cos.py
2021-11-29 15:29:00 +01:00

51 lines
1.6 KiB
Python

import torch
from torch.nn.parameter import Parameter
class AdaptiveCos(torch.nn.Module):
'''
Implementation of soft exponential activation.
Shape:
- Input: (N, *) where * means, any number of additional
dimensions
- Output: (N, *), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- See related paper:
https://arxiv.org/pdf/1602.01321.pdf
Examples:
>>> a1 = soft_exponential(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, alpha = None):
'''
Initialization.
INPUT:
- in_features: shape of the input
- aplha: trainable parameter
aplha is initialized with zero value by default
'''
super(AdaptiveCos, self).__init__()
#self.in_features = in_features
# initialize alpha
if alpha == None:
self.alpha = Parameter(torch.tensor(1.0)) # create a tensor out of alpha
else:
self.alpha = Parameter(torch.tensor(alpha)) # create a tensor out of alpha
self.alpha.requiresGrad = True # set requiresGrad to true!
self.scale = Parameter(torch.tensor(1.0))
self.scale.requiresGrad = True # set requiresGrad to true!
self.translate = Parameter(torch.tensor(0.0))
self.translate.requiresGrad = True # set requiresGrad to true!
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
'''
return self.scale * (torch.cos(self.alpha * x + self.translate))