Files
PINA/pina/trainer.py
Nicola Demo d654259428 add dataset and dataloader for sample points (#195)
* add dataset and dataloader for sample points
* unittests
2023-11-17 09:51:29 +01:00

57 lines
2.0 KiB
Python

""" Solver module. """
from pytorch_lightning import Trainer
from .utils import check_consistency
from .dataset import SamplePointDataset, SamplePointLoader, DataPointDataset
from .solvers.solver import SolverInterface
class Trainer(Trainer):
def __init__(self, solver, batch_size=None, **kwargs):
super().__init__(**kwargs)
# check inheritance consistency for solver
check_consistency(solver, SolverInterface)
self._model = solver
self.batch_size = batch_size
# create dataloader
if solver.problem.have_sampled_points is False:
raise RuntimeError(f'Input points in {solver.problem.not_sampled_points} '
'training are None. Please '
'sample points in your problem by calling '
'discretise_domain function before train '
'in the provided locations.')
self._create_or_update_loader()
def _create_or_update_loader(self):
"""
This method is used here because is resampling is needed
during training, there is no need to define to touch the
trainer dataloader, just call the method.
"""
devices = self._accelerator_connector._parallel_devices
if len(devices) > 1:
raise RuntimeError('Parallel training is not supported yet.')
device = devices[0]
dataset_phys = SamplePointDataset(self._model.problem, device)
dataset_data = DataPointDataset(self._model.problem, device)
self._loader = SamplePointLoader(
dataset_phys, dataset_data, batch_size=self.batch_size,
shuffle=True)
def train(self, **kwargs):
"""
Train the solver.
"""
return super().fit(self._model, train_dataloaders=self._loader, **kwargs)
@property
def solver(self):
"""
Returning trainer solver.
"""
return self._model