Files
PINA/pina/pinn.py
2022-12-12 11:09:20 +01:00

336 lines
12 KiB
Python

""" Module for PINN """
import torch
from .problem import AbstractProblem
from .label_tensor import LabelTensor
from .utils import merge_tensors, PinaDataset
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
class PINN(object):
def __init__(self,
problem,
model,
optimizer=torch.optim.Adam,
lr=0.001,
regularizer=0.00001,
batch_size=None,
dtype=torch.float32,
device='cpu',
error_norm='mse'):
'''
:param Problem problem: the formualation of the problem.
:param torch.nn.Module model: the neural network model to use.
:param torch.optim optimizer: the neural network optimizer to use;
default is `torch.optim.Adam`.
:param float lr: the learning rate; default is 0.001.
:param float regularizer: the coefficient for L2 regularizer term.
:param type dtype: the data type to use for the model. Valid option are
`torch.float32` and `torch.float64` (`torch.float16` only on GPU);
default is `torch.float64`.
:param string device: the device used for training; default 'cpu'
option include 'cuda' if cuda is available.
:param string/int error_norm: the loss function used as minimizer,
default mean square error 'mse'. If string options include mean
error 'me' and mean square error 'mse'. If int, the p-norm is
calculated where p is specifined by the int input.
:param int batch_size: batch size for the dataloader; default 5.
'''
if dtype == torch.float64:
raise NotImplementedError('only float for now')
self.problem = problem
# self._architecture = architecture if architecture else dict()
# self._architecture['input_dimension'] = self.problem.domain_bound.shape[0]
# self._architecture['output_dimension'] = len(self.problem.variables)
# if hasattr(self.problem, 'params_domain'):
# self._architecture['input_dimension'] += self.problem.params_domain.shape[0]
self.error_norm = error_norm
if device == 'cuda' and not torch.cuda.is_available():
raise RuntimeError
self.device = torch.device(device)
self.dtype = dtype
self.history_loss = {}
self.model = model
self.model.to(dtype=self.dtype, device=self.device)
self.truth_values = {}
self.input_pts = {}
self.trained_epoch = 0
self.optimizer = optimizer(
self.model.parameters(), lr=lr, weight_decay=regularizer)
self.batch_size = batch_size
self.data_set = PinaDataset(self)
@property
def problem(self):
return self._problem
@problem.setter
def problem(self, problem):
if not isinstance(problem, AbstractProblem):
raise TypeError
self._problem = problem
def _compute_norm(self, vec):
"""
Compute the norm of the `vec` one-dimensional tensor based on the
`self.error_norm` attribute.
.. todo: complete
:param vec torch.tensor: the tensor
"""
if isinstance(self.error_norm, int):
return torch.linalg.vector_norm(vec, ord=self.error_norm, dtype=self.dytpe)
elif self.error_norm == 'mse':
return torch.mean(vec.pow(2))
elif self.error_norm == 'me':
return torch.mean(torch.abs(vec))
else:
raise RuntimeError
def save_state(self, filename):
checkpoint = {
'epoch': self.trained_epoch,
'model_state': self.model.state_dict(),
'optimizer_state': self.optimizer.state_dict(),
'optimizer_class': self.optimizer.__class__,
'history': self.history_loss,
'input_points_dict': self.input_pts,
}
# TODO save also architecture param?
# if isinstance(self.model, DeepFeedForward):
# checkpoint['model_class'] = self.model.__class__
# checkpoint['model_structure'] = {
# }
torch.save(checkpoint, filename)
def load_state(self, filename):
checkpoint = torch.load(filename)
self.model.load_state_dict(checkpoint['model_state'])
self.optimizer = checkpoint['optimizer_class'](self.model.parameters())
self.optimizer.load_state_dict(checkpoint['optimizer_state'])
self.trained_epoch = checkpoint['epoch']
self.history_loss = checkpoint['history']
self.input_pts = checkpoint['input_points_dict']
return self
def _create_dataloader(self):
"""Private method for creating dataloader
:return: dataloader
:rtype: torch.utils.data.DataLoader
"""
if self.batch_size is None:
return [self.input_pts]
def custom_collate(batch):
# extracting pts labels
_, pts = list(batch[0].items())[0]
labels = pts.labels
# calling default torch collate
collate_res = default_collate(batch)
# save collate result in dict
res = {}
for key, val in collate_res.items():
val.labels = labels
res[key] = val
return res
# creating dataset, list of dataset for each location
datasets = [MyDataSet(key, val)
for key, val in self.input_pts.items()]
# creating dataloader
dataloaders = [DataLoader(dataset=dat,
batch_size=self.batch_size,
collate_fn=custom_collate)
for dat in datasets]
return dict(zip(self.input_pts.keys(), dataloaders))
def span_pts(self, *args, **kwargs):
"""
>>> pinn.span_pts(n=10, mode='grid')
>>> pinn.span_pts(n=10, mode='grid', location=['bound1'])
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
"""
if isinstance(args[0], int) and isinstance(args[1], str):
argument = {}
argument['n'] = int(args[0])
argument['mode'] = args[1]
argument['variables'] = self.problem.input_variables
arguments = [argument]
elif all(isinstance(arg, dict) for arg in args):
arguments = args
elif all(key in kwargs for key in ['n', 'mode']):
argument = {}
argument['n'] = kwargs['n']
argument['mode'] = kwargs['mode']
argument['variables'] = self.problem.input_variables
arguments = [argument]
else:
raise RuntimeError
locations = kwargs.get('locations', 'all')
if locations == 'all':
locations = [condition for condition in self.problem.conditions]
for location in locations:
condition = self.problem.conditions[location]
samples = tuple(condition.location.sample(
argument['n'],
argument['mode'],
variables=argument['variables'])
for argument in arguments)
pts = merge_tensors(samples)
# TODO
# pts = pts.double()
self.input_pts[location] = pts
def train(self, stop=100, frequency_print=2, save_loss=1, trial=None):
epoch = 0
data_loader = self.data_set.dataloader
header = []
for condition_name in self.problem.conditions:
condition = self.problem.conditions[condition_name]
if hasattr(condition, 'function'):
if isinstance(condition.function, list):
for function in condition.function:
header.append(f'{condition_name}{function.__name__}')
continue
header.append(f'{condition_name}')
while True:
losses = []
for condition_name in self.problem.conditions:
condition = self.problem.conditions[condition_name]
for batch in data_loader[condition_name]:
single_loss = []
if hasattr(condition, 'function'):
pts = batch[condition_name]
pts = pts.to(dtype=self.dtype, device=self.device)
pts.requires_grad_(True)
pts.retain_grad()
predicted = self.model(pts)
for function in condition.function:
residuals = function(pts, predicted)
local_loss = (
condition.data_weight*self._compute_norm(
residuals))
single_loss.append(local_loss)
elif hasattr(condition, 'output_points'):
pts = condition.input_points.to(
dtype=self.dtype, device=self.device)
predicted = self.model(pts)
residuals = predicted - condition.output_points
local_loss = (
condition.data_weight*self._compute_norm(residuals))
single_loss.append(local_loss)
self.optimizer.zero_grad()
sum(single_loss).backward()
self.optimizer.step()
losses.append(sum(single_loss))
if save_loss and (epoch % save_loss == 0 or epoch == 0):
self.history_loss[epoch] = [
loss.detach().item() for loss in losses]
if trial:
import optuna
trial.report(sum(losses), epoch)
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
if isinstance(stop, int):
if epoch == stop:
print('[epoch {:05d}] {:.6e} '.format(
self.trained_epoch, sum(losses).item()), end='')
for loss in losses:
print('{:.6e} '.format(loss.item()), end='')
print()
break
elif isinstance(stop, float):
if sum(losses) < stop:
break
if epoch % frequency_print == 0 or epoch == 1:
print(' {:5s} {:12s} '.format('', 'sum'), end='')
for name in header:
print('{:12.12s} '.format(name), end='')
print()
print('[epoch {:05d}] {:.6e} '.format(
self.trained_epoch, sum(losses).item()), end='')
for loss in losses:
print('{:.6e} '.format(loss.item()), end='')
print()
self.trained_epoch += 1
epoch += 1
return sum(losses).item()
def error(self, dtype='l2', res=100):
import numpy as np
if hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None:
pts_container = []
for mn, mx in self.problem.domain_bound:
pts_container.append(np.linspace(mn, mx, res))
grids_container = np.meshgrid(*pts_container)
Z_true = self.problem.truth_solution(*grids_container)
elif hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None:
grids_container = self.problem.data_solution['grid']
Z_true = self.problem.data_solution['grid_solution']
try:
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(
dtype=self.dtype, device=self.device)
Z_pred = self.model(unrolled_pts)
Z_pred = Z_pred.detach().numpy().reshape(grids_container[0].shape)
if dtype == 'l2':
return np.linalg.norm(Z_pred - Z_true)/np.linalg.norm(Z_true)
else:
# TODO H1
pass
except:
print("")
print("Something went wrong...")
print(
"Not able to compute the error. Please pass a data solution or a true solution")