Files
PINA/tests/test_pinn.py
2022-12-12 11:09:20 +01:00

128 lines
3.9 KiB
Python

import torch
import pytest
from pina import LabelTensor, Condition, Span, PINN
from pina.problem import SpatialProblem
from pina.model import FeedForward
from pina.operators import nabla
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
torch.sin(input_.extract(['y'])*torch.pi))
nabla_u = nabla(output_, input_, components=['u'], d=['x', 'y'])
return nabla_u - force_term
def nil_dirichlet(input_, output_):
value = 0.0
return output_.extract(['u']) - value
conditions = {
'gamma1': Condition(Span({'x': [0, 1], 'y': 1}), nil_dirichlet),
'gamma2': Condition(Span({'x': [0, 1], 'y': 0}), nil_dirichlet),
'gamma3': Condition(Span({'x': 1, 'y': [0, 1]}), nil_dirichlet),
'gamma4': Condition(Span({'x': 0, 'y': [0, 1]}), nil_dirichlet),
'D': Condition(Span({'x': [0, 1], 'y': [0, 1]}), laplace_equation),
}
def poisson_sol(self, pts):
return -(
torch.sin(pts.extract(['x'])*torch.pi) *
torch.sin(pts.extract(['y'])*torch.pi)
)/(2*torch.pi**2)
truth_solution = poisson_sol
problem = Poisson()
model = FeedForward(problem.input_variables, problem.output_variables)
def test_constructor():
PINN(problem, model)
def test_span_pts():
pinn = PINN(problem, model)
n = 10
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
pinn.span_pts(n, 'grid', boundaries)
for b in boundaries:
assert pinn.input_pts[b].shape[0] == n
pinn.span_pts(n, 'random', boundaries)
for b in boundaries:
assert pinn.input_pts[b].shape[0] == n
pinn.span_pts(n, 'grid', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n**2
pinn.span_pts(n, 'random', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n
def test_train():
pinn = PINN(problem, model)
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
pinn.span_pts(n, 'grid', boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(5)
def test_train():
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
expected_keys = [[], list(range(0, 50, 3))]
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(problem, model)
pinn.span_pts(n, 'grid', boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
def test_train_batch():
pinn = PINN(problem, model, batch_size=6)
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
pinn.span_pts(n, 'grid', boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(5)
def test_train_batch():
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
expected_keys = [[], list(range(0, 50, 3))]
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(problem, model, batch_size=6)
pinn.span_pts(n, 'grid', boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
if torch.cuda.is_available():
def test_gpu_train():
pinn = PINN(problem, model, batch_size=20, device='cuda')
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 100
pinn.span_pts(n, 'grid', boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(5)
def test_gpu_train_nobatch():
pinn = PINN(problem, model, batch_size=None, device='cuda')
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 100
pinn.span_pts(n, 'grid', boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(5)