Files
PINA/tests/test_model/test_deeponet.py
Filippo Olivo 4177bfbb50 Fix Codacy Warnings (#477)
---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:48:18 +01:00

157 lines
4.7 KiB
Python

import pytest
import torch
from torch.nn import Linear
from pina import LabelTensor
from pina.model import DeepONet
from pina.model import FeedForward
data = torch.rand((20, 3))
input_vars = ["a", "b", "c"]
input_ = LabelTensor(data, input_vars)
symbol_funcs_red = DeepONet._symbol_functions(dim=-1)
output_dims = [1, 5, 10, 20]
def test_constructor():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=["a"],
input_indeces_trunk_net=["b", "c"],
reduction="+",
aggregator="*",
)
def test_constructor_fails_when_invalid_inner_layer_size():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=8)
with pytest.raises(ValueError):
DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=["a"],
input_indeces_trunk_net=["b", "c"],
reduction="+",
aggregator="*",
)
def test_forward_extract_str():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=["a"],
input_indeces_trunk_net=["b", "c"],
reduction="+",
aggregator="*",
)
model(input_)
assert model(input_).shape[-1] == 1
def test_forward_extract_int():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=[0],
input_indeces_trunk_net=[1, 2],
reduction="+",
aggregator="*",
)
model(data)
def test_backward_extract_int():
data = torch.rand((20, 3))
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=[0],
input_indeces_trunk_net=[1, 2],
reduction="+",
aggregator="*",
)
data.requires_grad = True
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20, 3])
def test_forward_extract_str_wrong():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=["a"],
input_indeces_trunk_net=["b", "c"],
reduction="+",
aggregator="*",
)
with pytest.raises(RuntimeError):
model(data)
def test_backward_extract_str_wrong():
data = torch.rand((20, 3))
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=["a"],
input_indeces_trunk_net=["b", "c"],
reduction="+",
aggregator="*",
)
data.requires_grad = True
with pytest.raises(RuntimeError):
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20, 3])
@pytest.mark.parametrize("red", symbol_funcs_red)
def test_forward_symbol_funcs(red):
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=["a"],
input_indeces_trunk_net=["b", "c"],
reduction=red,
aggregator="*",
)
model(input_)
assert model(input_).shape[-1] == 1
@pytest.mark.parametrize("out_dim", output_dims)
def test_forward_callable_reduction(out_dim):
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
reduction_layer = Linear(10, out_dim)
model = DeepONet(
branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=["a"],
input_indeces_trunk_net=["b", "c"],
reduction=reduction_layer,
aggregator="*",
)
model(input_)
assert model(input_).shape[-1] == out_dim