Files
PINA/pina/data/data_module.py
2025-03-19 17:46:34 +01:00

180 lines
6.8 KiB
Python

"""
This module provide basic data management functionalities
"""
import math
import torch
import logging
from pytorch_lightning import LightningDataModule
from .sample_dataset import SamplePointDataset
from .supervised_dataset import SupervisedDataset
from .unsupervised_dataset import UnsupervisedDataset
from .pina_dataloader import PinaDataLoader
from .pina_subset import PinaSubset
class PinaDataModule(LightningDataModule):
"""
This class extend LightningDataModule, allowing proper creation and
management of different types of Datasets defined in PINA
"""
def __init__(self,
problem,
device,
train_size=.7,
test_size=.1,
val_size=.2,
predict_size=0.,
batch_size=None,
shuffle=True,
datasets=None):
"""
Initialize the object, creating dataset based on input problem
:param AbstractProblem problem: PINA problem
:param device: Device used for training and testing
:param train_size: number/percentage of elements in train split
:param test_size: number/percentage of elements in test split
:param eval_size: number/percentage of elements in evaluation split
:param batch_size: batch size used for training
:param datasets: list of datasets objects
"""
logging.debug('Start initialization of Pina DataModule')
logging.info('Start initialization of Pina DataModule')
super().__init__()
self.problem = problem
self.device = device
self.dataset_classes = [
SupervisedDataset, UnsupervisedDataset, SamplePointDataset
]
if datasets is None:
self.datasets = None
else:
self.datasets = datasets
self.split_length = []
self.split_names = []
self.loader_functions = {}
self.batch_size = batch_size
self.condition_names = problem.collector.conditions_name
if train_size > 0:
self.split_names.append('train')
self.split_length.append(train_size)
self.loader_functions['train_dataloader'] = lambda: PinaDataLoader(
self.splits['train'], self.batch_size, self.condition_names)
if test_size > 0:
self.split_length.append(test_size)
self.split_names.append('test')
self.loader_functions['test_dataloader'] = lambda: PinaDataLoader(
self.splits['test'], self.batch_size, self.condition_names)
if val_size > 0:
self.split_length.append(val_size)
self.split_names.append('val')
self.loader_functions['val_dataloader'] = lambda: PinaDataLoader(
self.splits['val'], self.batch_size, self.condition_names)
if predict_size > 0:
self.split_length.append(predict_size)
self.split_names.append('predict')
self.loader_functions['predict_dataloader'] = lambda: PinaDataLoader(
self.splits['predict'], self.batch_size, self.condition_names)
self.splits = {k: {} for k in self.split_names}
self.shuffle = shuffle
for k, v in self.loader_functions.items():
setattr(self, k, v)
def prepare_data(self):
if self.datasets is None:
self._create_datasets()
def setup(self, stage=None):
"""
Perform the splitting of the dataset
"""
logging.debug('Start setup of Pina DataModule obj')
if self.datasets is None:
self._create_datasets()
if stage == 'fit' or stage is None:
for dataset in self.datasets:
if len(dataset) > 0:
splits = self.dataset_split(dataset,
self.split_length,
shuffle=self.shuffle)
for i in range(len(self.split_length)):
self.splits[self.split_names[i]][
dataset.data_type] = splits[i]
elif stage == 'test':
raise NotImplementedError("Testing pipeline not implemented yet")
else:
raise ValueError("stage must be either 'fit' or 'test'")
@staticmethod
def dataset_split(dataset, lengths, seed=None, shuffle=True):
"""
Perform the splitting of the dataset
:param dataset: dataset object we wanted to split
:param lengths: lengths of elements in dataset
:param seed: random seed
:param shuffle: shuffle dataset
:return: split dataset
:rtype: PinaSubset
"""
if sum(lengths) - 1 < 1e-3:
len_dataset = len(dataset)
lengths = [
int(math.floor(len_dataset * length)) for length in lengths
]
remainder = len(dataset) - sum(lengths)
for i in range(remainder):
lengths[i % len(lengths)] += 1
elif sum(lengths) - 1 >= 1e-3:
raise ValueError(f"Sum of lengths is {sum(lengths)} less than 1")
if shuffle:
if seed is not None:
generator = torch.Generator()
generator.manual_seed(seed)
indices = torch.randperm(sum(lengths), generator=generator)
else:
indices = torch.randperm(sum(lengths))
dataset.apply_shuffle(indices)
indices = torch.arange(0, sum(lengths), 1, dtype=torch.uint8).tolist()
offsets = [
sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths))
]
return [
PinaSubset(dataset, indices[offset:offset + length])
for offset, length in zip(offsets, lengths)
]
def _create_datasets(self):
"""
Create the dataset objects putting data
"""
logging.debug('Dataset creation in PinaDataModule obj')
collector = self.problem.collector
batching_dim = self.problem.batching_dimension
datasets_slots = [i.__slots__ for i in self.dataset_classes]
self.datasets = [
dataset(device=self.device) for dataset in self.dataset_classes
]
logging.debug('Filling datasets in PinaDataModule obj')
for name, data in collector.data_collections.items():
keys = list(data.keys())
idx = [
key for key, val in collector.conditions_name.items()
if val == name
]
for i, slot in enumerate(datasets_slots):
if slot == keys:
self.datasets[i].add_points(data, idx[0], batching_dim)
continue
datasets = []
for dataset in self.datasets:
if not dataset.empty:
dataset.initialize()
datasets.append(dataset)
self.datasets = datasets