* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
49 lines
1.7 KiB
Python
49 lines
1.7 KiB
Python
""" Definition of the Poisson problem on a square domain."""
|
|
|
|
from pina.problem import SpatialProblem
|
|
from pina.operator import laplacian
|
|
from pina import Condition
|
|
from pina.domain import CartesianDomain
|
|
from pina.equation.equation import Equation
|
|
from pina.equation.equation_factory import FixedValue
|
|
import torch
|
|
|
|
def laplace_equation(input_, output_):
|
|
"""
|
|
Implementation of the laplace equation.
|
|
"""
|
|
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
|
torch.sin(input_.extract(['y']) * torch.pi))
|
|
delta_u = laplacian(output_.extract(['u']), input_)
|
|
return delta_u - force_term
|
|
|
|
my_laplace = Equation(laplace_equation)
|
|
|
|
class Poisson2DSquareProblem(SpatialProblem):
|
|
"""
|
|
Implementation of the 2-dimensional Poisson problem on a square domain.
|
|
"""
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
|
|
domains = {
|
|
'D': CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
|
|
'g1': CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
'g2': CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
'g3': CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
'g4': CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
}
|
|
|
|
conditions = {
|
|
'nil_g1': Condition(domain='g1', equation=FixedValue(0.0)),
|
|
'nil_g2': Condition(domain='g2', equation=FixedValue(0.0)),
|
|
'nil_g3': Condition(domain='g3', equation=FixedValue(0.0)),
|
|
'nil_g4': Condition(domain='g4', equation=FixedValue(0.0)),
|
|
'laplace_D': Condition(domain='D', equation=my_laplace),
|
|
}
|
|
|
|
def poisson_sol(self, pts):
|
|
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
|
torch.sin(pts.extract(['y']) * torch.pi))
|
|
|