Files
PINA/pina/problem/zoo/poisson_2d_square.py
Dario Coscia df673cad4e Renaming
* solvers -> solver
* adaptive_functions -> adaptive_function
* callbacks -> callback
* operators -> operator
* pinns -> physics_informed_solver
* layers -> block
2025-03-19 17:46:36 +01:00

49 lines
1.7 KiB
Python

""" Definition of the Poisson problem on a square domain."""
from pina.problem import SpatialProblem
from pina.operator import laplacian
from pina import Condition
from pina.domain import CartesianDomain
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
import torch
def laplace_equation(input_, output_):
"""
Implementation of the laplace equation.
"""
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
class Poisson2DSquareProblem(SpatialProblem):
"""
Implementation of the 2-dimensional Poisson problem on a square domain.
"""
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
domains = {
'D': CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
'g1': CartesianDomain({'x': [0, 1], 'y': 1}),
'g2': CartesianDomain({'x': [0, 1], 'y': 0}),
'g3': CartesianDomain({'x': 1, 'y': [0, 1]}),
'g4': CartesianDomain({'x': 0, 'y': [0, 1]}),
}
conditions = {
'nil_g1': Condition(domain='g1', equation=FixedValue(0.0)),
'nil_g2': Condition(domain='g2', equation=FixedValue(0.0)),
'nil_g3': Condition(domain='g3', equation=FixedValue(0.0)),
'nil_g4': Condition(domain='g4', equation=FixedValue(0.0)),
'laplace_D': Condition(domain='D', equation=my_laplace),
}
def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi))