* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
125 lines
4.4 KiB
Python
125 lines
4.4 KiB
Python
""" Module for Gradient PINN. """
|
|
|
|
import torch
|
|
|
|
from .pinn import PINN
|
|
from pina.operator import grad
|
|
from pina.problem import SpatialProblem
|
|
|
|
|
|
class GradientPINN(PINN):
|
|
r"""
|
|
Gradient Physics Informed Neural Network (GradientPINN) solver class.
|
|
This class implements Gradient Physics Informed Neural
|
|
Network solver, using a user specified ``model`` to solve a specific
|
|
``problem``. It can be used for solving both forward and inverse problems.
|
|
|
|
The Gradient Physics Informed Network aims to find
|
|
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
|
|
of the differential problem:
|
|
|
|
.. math::
|
|
|
|
\begin{cases}
|
|
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
|
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
|
\mathbf{x}\in\partial\Omega
|
|
\end{cases}
|
|
|
|
minimizing the loss function
|
|
|
|
.. math::
|
|
\mathcal{L}_{\rm{problem}} =& \frac{1}{N}\sum_{i=1}^N
|
|
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
|
\frac{1}{N}\sum_{i=1}^N
|
|
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)) + \\
|
|
&\frac{1}{N}\sum_{i=1}^N
|
|
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
|
\frac{1}{N}\sum_{i=1}^N
|
|
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i))
|
|
|
|
|
|
where :math:`\mathcal{L}` is a specific loss function,
|
|
default Mean Square Error:
|
|
|
|
.. math::
|
|
\mathcal{L}(v) = \| v \|^2_2.
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Yu, Jeremy, et al. "Gradient-enhanced
|
|
physics-informed neural networks for forward and inverse
|
|
PDE problems." Computer Methods in Applied Mechanics
|
|
and Engineering 393 (2022): 114823.
|
|
DOI: `10.1016 <https://doi.org/10.1016/j.cma.2022.114823>`_.
|
|
|
|
.. note::
|
|
This class can only work for problems inheriting
|
|
from at least :class:`~pina.problem.spatial_problem.SpatialProblem`
|
|
class.
|
|
"""
|
|
|
|
def __init__(self,
|
|
problem,
|
|
model,
|
|
optimizer=None,
|
|
scheduler=None,
|
|
weighting=None,
|
|
loss=None):
|
|
"""
|
|
:param torch.nn.Module model: The neural network model to use.
|
|
:param AbstractProblem problem: The formulation of the problem. It must
|
|
inherit from at least
|
|
:class:`~pina.problem.spatial_problem.SpatialProblem` to compute
|
|
the gradient of the loss.
|
|
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
|
use; default `None`.
|
|
:param torch.optim.LRScheduler scheduler: Learning rate scheduler;
|
|
default `None`.
|
|
:param WeightingInterface weighting: The weighting schema to use;
|
|
default `None`.
|
|
:param torch.nn.Module loss: The loss function to be minimized;
|
|
default `None`.
|
|
"""
|
|
super().__init__(model=model,
|
|
problem=problem,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
weighting=weighting,
|
|
loss=loss)
|
|
|
|
if not isinstance(self.problem, SpatialProblem):
|
|
raise ValueError(
|
|
"Gradient PINN computes the gradient of the "
|
|
"PINN loss with respect to the spatial "
|
|
"coordinates, thus the PINA problem must be "
|
|
"a SpatialProblem."
|
|
)
|
|
|
|
def loss_phys(self, samples, equation):
|
|
"""
|
|
Computes the physics loss for the GPINN solver based on given
|
|
samples and equation.
|
|
|
|
:param LabelTensor samples: The samples to evaluate the physics loss.
|
|
:param EquationInterface equation: The governing equation
|
|
representing the physics.
|
|
:return: The physics loss calculated based on given
|
|
samples and equation.
|
|
:rtype: LabelTensor
|
|
"""
|
|
# classical PINN loss
|
|
residual = self.compute_residual(samples=samples, equation=equation)
|
|
loss_value = self.loss(
|
|
torch.zeros_like(residual, requires_grad=True), residual
|
|
)
|
|
|
|
# gradient PINN loss
|
|
loss_value = loss_value.reshape(-1, 1)
|
|
loss_value.labels = ["__loss"]
|
|
loss_grad = grad(loss_value, samples, d=self.problem.spatial_variables)
|
|
g_loss_phys = self.loss(
|
|
torch.zeros_like(loss_grad, requires_grad=True), loss_grad
|
|
)
|
|
return loss_value + g_loss_phys
|