* gpinn/basepinn new classes, pinn restructure * codacy fix gpinn/basepinn/pinn * inverse problem fix * Causal PINN (#267) * fix GPU training in inverse problem (#283) * Create a `compute_residual` attribute for `PINNInterface` * Modify dataloading in solvers (#286) * Modify PINNInterface by removing _loss_phys, _loss_data * Adding in PINNInterface a variable to track the current condition during training * Modify GPINN,PINN,CausalPINN to match changes in PINNInterface * Competitive Pinn Addition (#288) * fixing after rebase/ fix loss * fixing final issues --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> * Modify min max formulation to max min for paper consistency * Adding SAPINN solver (#291) * rom solver * fix import --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Anna Ivagnes <75523024+annaivagnes@users.noreply.github.com> Co-authored-by: valc89 <103250118+valc89@users.noreply.github.com> Co-authored-by: Monthly Tag bot <mtbot@noreply.github.com> Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
191 lines
7.8 KiB
Python
191 lines
7.8 KiB
Python
""" Module for ReducedOrderModelSolver """
|
|
|
|
import torch
|
|
|
|
from pina.solvers import SupervisedSolver
|
|
|
|
class ReducedOrderModelSolver(SupervisedSolver):
|
|
r"""
|
|
ReducedOrderModelSolver solver class. This class implements a
|
|
Reduced Order Model solver, using user specified ``reduction_network`` and
|
|
``interpolation_network`` to solve a specific ``problem``.
|
|
|
|
The Reduced Order Model approach aims to find
|
|
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
|
|
of the differential problem:
|
|
|
|
.. math::
|
|
|
|
\begin{cases}
|
|
\mathcal{A}[\mathbf{u}(\mu)](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
|
\mathcal{B}[\mathbf{u}(\mu)](\mathbf{x})=0\quad,
|
|
\mathbf{x}\in\partial\Omega
|
|
\end{cases}
|
|
|
|
This is done by using two neural networks. The ``reduction_network``, which
|
|
contains an encoder :math:`\mathcal{E}_{\rm{net}}`, a decoder
|
|
:math:`\mathcal{D}_{\rm{net}}`; and an ``interpolation_network``
|
|
:math:`\mathcal{I}_{\rm{net}}`. The input is assumed to be discretised in
|
|
the spatial dimensions.
|
|
|
|
The following loss function is minimized during training
|
|
|
|
.. math::
|
|
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
|
\mathcal{L}(\mathcal{E}_{\rm{net}}[\mathbf{u}(\mu_i)] -
|
|
\mathcal{I}_{\rm{net}}[\mu_i]) +
|
|
\mathcal{L}(
|
|
\mathcal{D}_{\rm{net}}[\mathcal{E}_{\rm{net}}[\mathbf{u}(\mu_i)]] -
|
|
\mathbf{u}(\mu_i))
|
|
|
|
where :math:`\mathcal{L}` is a specific loss function, default Mean Square Error:
|
|
|
|
.. math::
|
|
\mathcal{L}(v) = \| v \|^2_2.
|
|
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Hesthaven, Jan S., and Stefano Ubbiali.
|
|
"Non-intrusive reduced order modeling of nonlinear problems
|
|
using neural networks." Journal of Computational
|
|
Physics 363 (2018): 55-78.
|
|
DOI `10.1016/j.jcp.2018.02.037
|
|
<https://doi.org/10.1016/j.jcp.2018.02.037>`_.
|
|
|
|
.. note::
|
|
The specified ``reduction_network`` must contain two methods,
|
|
namely ``encode`` for input encoding and ``decode`` for decoding the
|
|
former result. The ``interpolation_network`` network ``forward`` output
|
|
represents the interpolation of the latent space obtain with
|
|
``reduction_network.encode``.
|
|
|
|
.. note::
|
|
This solver uses the end-to-end training strategy, i.e. the
|
|
``reduction_network`` and ``interpolation_network`` are trained
|
|
simultaneously. For reference on this trainig strategy look at:
|
|
Pichi, Federico, Beatriz Moya, and Jan S. Hesthaven.
|
|
"A graph convolutional autoencoder approach to model order reduction
|
|
for parametrized PDEs." Journal of
|
|
Computational Physics 501 (2024): 112762.
|
|
DOI
|
|
`10.1016/j.jcp.2024.112762 <https://doi.org/10.1016/
|
|
j.jcp.2024.112762>`_.
|
|
|
|
.. warning::
|
|
This solver works only for data-driven model. Hence in the ``problem``
|
|
definition the codition must only contain ``input_points``
|
|
(e.g. coefficient parameters, time parameters), and ``output_points``.
|
|
|
|
.. warning::
|
|
This solver does not currently support the possibility to pass
|
|
``extra_feature``.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
problem,
|
|
reduction_network,
|
|
interpolation_network,
|
|
loss=torch.nn.MSELoss(),
|
|
optimizer=torch.optim.Adam,
|
|
optimizer_kwargs={"lr": 0.001},
|
|
scheduler=torch.optim.lr_scheduler.ConstantLR,
|
|
scheduler_kwargs={"factor": 1, "total_iters": 0},
|
|
):
|
|
"""
|
|
:param AbstractProblem problem: The formualation of the problem.
|
|
:param torch.nn.Module reduction_network: The reduction network used
|
|
for reducing the input space. It must contain two methods,
|
|
namely ``encode`` for input encoding and ``decode`` for decoding the
|
|
former result.
|
|
:param torch.nn.Module interpolation_network: The interpolation network
|
|
for interpolating the control parameters to latent space obtain by
|
|
the ``reduction_network`` encoding.
|
|
:param torch.nn.Module loss: The loss function used as minimizer,
|
|
default :class:`torch.nn.MSELoss`.
|
|
:param torch.nn.Module extra_features: The additional input
|
|
features to use as augmented input.
|
|
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
|
use; default is :class:`torch.optim.Adam`.
|
|
:param dict optimizer_kwargs: Optimizer constructor keyword args.
|
|
:param float lr: The learning rate; default is 0.001.
|
|
:param torch.optim.LRScheduler scheduler: Learning
|
|
rate scheduler.
|
|
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
|
|
"""
|
|
model = torch.nn.ModuleDict({
|
|
'reduction_network' : reduction_network,
|
|
'interpolation_network' : interpolation_network})
|
|
|
|
super().__init__(
|
|
model=model,
|
|
problem=problem,
|
|
loss=loss,
|
|
optimizer=optimizer,
|
|
optimizer_kwargs=optimizer_kwargs,
|
|
scheduler=scheduler,
|
|
scheduler_kwargs=scheduler_kwargs
|
|
)
|
|
|
|
# assert reduction object contains encode/ decode
|
|
if not hasattr(self.neural_net['reduction_network'], 'encode'):
|
|
raise SyntaxError('reduction_network must have encode method. '
|
|
'The encode method should return a lower '
|
|
'dimensional representation of the input.')
|
|
if not hasattr(self.neural_net['reduction_network'], 'decode'):
|
|
raise SyntaxError('reduction_network must have decode method. '
|
|
'The decode method should return a high '
|
|
'dimensional representation of the encoding.')
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass implementation for the solver. It finds the encoder
|
|
representation by calling ``interpolation_network.forward`` on the
|
|
input, and maps this representation to output space by calling
|
|
``reduction_network.decode``.
|
|
|
|
:param torch.Tensor x: Input tensor.
|
|
:return: Solver solution.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
reduction_network = self.neural_net['reduction_network']
|
|
interpolation_network = self.neural_net['interpolation_network']
|
|
return reduction_network.decode(interpolation_network(x))
|
|
|
|
def loss_data(self, input_pts, output_pts):
|
|
"""
|
|
The data loss for the ReducedOrderModelSolver solver.
|
|
It computes the loss between
|
|
the network output against the true solution. This function
|
|
should not be override if not intentionally.
|
|
|
|
:param LabelTensor input_tensor: The input to the neural networks.
|
|
:param LabelTensor output_tensor: The true solution to compare the
|
|
network solution.
|
|
:return: The residual loss averaged on the input coordinates
|
|
:rtype: torch.Tensor
|
|
"""
|
|
# extract networks
|
|
reduction_network = self.neural_net['reduction_network']
|
|
interpolation_network = self.neural_net['interpolation_network']
|
|
# encoded representations loss
|
|
encode_repr_inter_net = interpolation_network(input_pts)
|
|
encode_repr_reduction_network = reduction_network.encode(output_pts)
|
|
loss_encode = self.loss(encode_repr_inter_net,
|
|
encode_repr_reduction_network)
|
|
# reconstruction loss
|
|
loss_reconstruction = self.loss(
|
|
reduction_network.decode(encode_repr_reduction_network),
|
|
output_pts)
|
|
|
|
return loss_encode + loss_reconstruction
|
|
|
|
@property
|
|
def neural_net(self):
|
|
"""
|
|
Neural network for training. It returns a :obj:`~torch.nn.ModuleDict`
|
|
containing the ``reduction_network`` and ``interpolation_network``.
|
|
"""
|
|
return self._neural_net.torchmodel
|