277 lines
9.8 KiB
Python
277 lines
9.8 KiB
Python
""" Module for PINN """
|
|
import torch
|
|
|
|
from .problem import AbstractProblem
|
|
from .label_tensor import LabelTensor
|
|
from .utils import merge_tensors
|
|
|
|
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
|
|
|
|
|
|
class PINN(object):
|
|
|
|
def __init__(self,
|
|
problem,
|
|
model,
|
|
optimizer=torch.optim.Adam,
|
|
lr=0.001,
|
|
regularizer=0.00001,
|
|
dtype=torch.float32,
|
|
device='cpu',
|
|
error_norm='mse'):
|
|
'''
|
|
:param Problem problem: the formualation of the problem.
|
|
:param torch.nn.Module model: the neural network model to use.
|
|
:param float lr: the learning rate; default is 0.001.
|
|
:param float regularizer: the coefficient for L2 regularizer term.
|
|
:param type dtype: the data type to use for the model. Valid option are
|
|
`torch.float32` and `torch.float64` (`torch.float16` only on GPU);
|
|
default is `torch.float64`.
|
|
'''
|
|
|
|
if dtype == torch.float64:
|
|
raise NotImplementedError('only float for now')
|
|
|
|
self.problem = problem
|
|
|
|
# self._architecture = architecture if architecture else dict()
|
|
# self._architecture['input_dimension'] = self.problem.domain_bound.shape[0]
|
|
# self._architecture['output_dimension'] = len(self.problem.variables)
|
|
# if hasattr(self.problem, 'params_domain'):
|
|
# self._architecture['input_dimension'] += self.problem.params_domain.shape[0]
|
|
|
|
self.error_norm = error_norm
|
|
|
|
if device == 'cuda' and not torch.cuda.is_available():
|
|
raise RuntimeError
|
|
self.device = torch.device(device)
|
|
|
|
self.dtype = dtype
|
|
self.history_loss = {}
|
|
|
|
self.model = model
|
|
self.model.to(dtype=self.dtype, device=self.device)
|
|
|
|
self.truth_values = {}
|
|
self.input_pts = {}
|
|
|
|
self.trained_epoch = 0
|
|
self.optimizer = optimizer(
|
|
self.model.parameters(), lr=lr, weight_decay=regularizer)
|
|
|
|
@property
|
|
def problem(self):
|
|
return self._problem
|
|
|
|
@problem.setter
|
|
def problem(self, problem):
|
|
if not isinstance(problem, AbstractProblem):
|
|
raise TypeError
|
|
self._problem = problem
|
|
|
|
def _compute_norm(self, vec):
|
|
"""
|
|
Compute the norm of the `vec` one-dimensional tensor based on the
|
|
`self.error_norm` attribute.
|
|
|
|
.. todo: complete
|
|
|
|
:param vec torch.tensor: the tensor
|
|
"""
|
|
if isinstance(self.error_norm, int):
|
|
return torch.linalg.vector_norm(vec, ord = self.error_norm, dtype=self.dytpe)
|
|
elif self.error_norm == 'mse':
|
|
return torch.mean(vec.pow(2))
|
|
elif self.error_norm == 'me':
|
|
return torch.mean(torch.abs(vec))
|
|
else:
|
|
raise RuntimeError
|
|
|
|
def save_state(self, filename):
|
|
|
|
checkpoint = {
|
|
'epoch': self.trained_epoch,
|
|
'model_state': self.model.state_dict(),
|
|
'optimizer_state' : self.optimizer.state_dict(),
|
|
'optimizer_class' : self.optimizer.__class__,
|
|
'history' : self.history_loss,
|
|
'input_points_dict' : self.input_pts,
|
|
}
|
|
|
|
# TODO save also architecture param?
|
|
#if isinstance(self.model, DeepFeedForward):
|
|
# checkpoint['model_class'] = self.model.__class__
|
|
# checkpoint['model_structure'] = {
|
|
# }
|
|
torch.save(checkpoint, filename)
|
|
|
|
def load_state(self, filename):
|
|
|
|
checkpoint = torch.load(filename)
|
|
self.model.load_state_dict(checkpoint['model_state'])
|
|
|
|
|
|
self.optimizer = checkpoint['optimizer_class'](self.model.parameters())
|
|
self.optimizer.load_state_dict(checkpoint['optimizer_state'])
|
|
|
|
self.trained_epoch = checkpoint['epoch']
|
|
self.history_loss = checkpoint['history']
|
|
|
|
self.input_pts = checkpoint['input_points_dict']
|
|
|
|
return self
|
|
|
|
def span_pts(self, *args, **kwargs):
|
|
"""
|
|
>>> pinn.span_pts(n=10, mode='grid')
|
|
>>> pinn.span_pts(n=10, mode='grid', location=['bound1'])
|
|
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
|
|
"""
|
|
if isinstance(args[0], int) and isinstance(args[1], str):
|
|
argument = {}
|
|
argument['n'] = int(args[0])
|
|
argument['mode'] = args[1]
|
|
argument['variables'] = self.problem.input_variables
|
|
arguments = [argument]
|
|
elif all(isinstance(arg, dict) for arg in args):
|
|
arguments = args
|
|
elif all(key in kwargs for key in ['n', 'mode']):
|
|
argument = {}
|
|
argument['n'] = kwargs['n']
|
|
argument['mode'] = kwargs['mode']
|
|
argument['variables'] = self.problem.input_variables
|
|
arguments = [argument]
|
|
else:
|
|
raise RuntimeError
|
|
|
|
locations = kwargs.get('locations', 'all')
|
|
|
|
if locations == 'all':
|
|
locations = [condition for condition in self.problem.conditions]
|
|
for location in locations:
|
|
condition = self.problem.conditions[location]
|
|
|
|
samples = tuple(condition.location.sample(
|
|
argument['n'],
|
|
argument['mode'],
|
|
variables=argument['variables'])
|
|
for argument in arguments)
|
|
pts = merge_tensors(samples)
|
|
|
|
# TODO
|
|
# pts = pts.double()
|
|
pts = pts.to(dtype=self.dtype, device=self.device)
|
|
pts.requires_grad_(True)
|
|
pts.retain_grad()
|
|
|
|
self.input_pts[location] = pts
|
|
|
|
def train(self, stop=100, frequency_print=2, save_loss=1, trial=None):
|
|
|
|
epoch = 0
|
|
|
|
header = []
|
|
for condition_name in self.problem.conditions:
|
|
condition = self.problem.conditions[condition_name]
|
|
|
|
if (hasattr(condition, 'function') and
|
|
isinstance(condition.function, list)):
|
|
for function in condition.function:
|
|
header.append(f'{condition_name}{function.__name__}')
|
|
else:
|
|
header.append(f'{condition_name}')
|
|
|
|
while True:
|
|
losses = []
|
|
|
|
for condition_name in self.problem.conditions:
|
|
condition = self.problem.conditions[condition_name]
|
|
|
|
if hasattr(condition, 'function'):
|
|
pts = self.input_pts[condition_name]
|
|
predicted = self.model(pts)
|
|
for function in condition.function:
|
|
residuals = function(pts, predicted)
|
|
local_loss = (
|
|
condition.data_weight*self._compute_norm(
|
|
residuals))
|
|
losses.append(local_loss)
|
|
elif hasattr(condition, 'output_points'):
|
|
pts = condition.input_points
|
|
predicted = self.model(pts)
|
|
residuals = predicted - condition.output_points
|
|
local_loss = (
|
|
condition.data_weight*self._compute_norm(residuals))
|
|
losses.append(local_loss)
|
|
|
|
self.optimizer.zero_grad()
|
|
|
|
sum(losses).backward()
|
|
self.optimizer.step()
|
|
|
|
if save_loss and (epoch % save_loss == 0 or epoch == 0):
|
|
self.history_loss[epoch] = [
|
|
loss.detach().item() for loss in losses]
|
|
|
|
if trial:
|
|
import optuna
|
|
trial.report(sum(losses), epoch)
|
|
if trial.should_prune():
|
|
raise optuna.exceptions.TrialPruned()
|
|
|
|
if isinstance(stop, int):
|
|
if epoch == stop:
|
|
print('[epoch {:05d}] {:.6e} '.format(self.trained_epoch, sum(losses).item()), end='')
|
|
for loss in losses:
|
|
print('{:.6e} '.format(loss.item()), end='')
|
|
print()
|
|
break
|
|
elif isinstance(stop, float):
|
|
if sum(losses) < stop:
|
|
break
|
|
|
|
if epoch % frequency_print == 0 or epoch == 1:
|
|
print(' {:5s} {:12s} '.format('', 'sum'), end='')
|
|
for name in header:
|
|
print('{:12.12s} '.format(name), end='')
|
|
print()
|
|
|
|
print('[epoch {:05d}] {:.6e} '.format(self.trained_epoch, sum(losses).item()), end='')
|
|
for loss in losses:
|
|
print('{:.6e} '.format(loss.item()), end='')
|
|
print()
|
|
|
|
self.trained_epoch += 1
|
|
epoch += 1
|
|
|
|
return sum(losses).item()
|
|
|
|
|
|
def error(self, dtype='l2', res=100):
|
|
|
|
import numpy as np
|
|
if hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None:
|
|
pts_container = []
|
|
for mn, mx in self.problem.domain_bound:
|
|
pts_container.append(np.linspace(mn, mx, res))
|
|
grids_container = np.meshgrid(*pts_container)
|
|
Z_true = self.problem.truth_solution(*grids_container)
|
|
|
|
elif hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None:
|
|
grids_container = self.problem.data_solution['grid']
|
|
Z_true = self.problem.data_solution['grid_solution']
|
|
try:
|
|
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(dtype=self.dtype, device=self.device)
|
|
Z_pred = self.model(unrolled_pts)
|
|
Z_pred = Z_pred.detach().numpy().reshape(grids_container[0].shape)
|
|
|
|
if dtype == 'l2':
|
|
return np.linalg.norm(Z_pred - Z_true)/np.linalg.norm(Z_true)
|
|
else:
|
|
# TODO H1
|
|
pass
|
|
except:
|
|
print("")
|
|
print("Something went wrong...")
|
|
print("Not able to compute the error. Please pass a data solution or a true solution")
|