292 lines
12 KiB
Python
292 lines
12 KiB
Python
"""
|
|
Module for operators vectorize implementation. Differential operators are used to write any differential problem.
|
|
These operators are implemented to work on different accellerators: CPU, GPU, TPU or MPS.
|
|
All operators take as input a tensor onto which computing the operator, a tensor with respect
|
|
to which computing the operator, the name of the output variables to calculate the operator
|
|
for (in case of multidimensional functions), and the variables name on which the operator is calculated.
|
|
"""
|
|
import torch
|
|
from pina.label_tensor import LabelTensor
|
|
|
|
|
|
def grad(output_, input_, components=None, d=None):
|
|
"""
|
|
Perform gradient operation. The operator works for vectorial and scalar
|
|
functions, with multiple input coordinates.
|
|
|
|
:param LabelTensor output_: the output tensor onto which computing the
|
|
gradient.
|
|
:param LabelTensor input_: the input tensor with respect to which computing
|
|
the gradient.
|
|
:param list(str) components: the name of the output variables to calculate
|
|
the gradient for. It should be a subset of the output labels. If None,
|
|
all the output variables are considered. Default is None.
|
|
:param list(str) d: the name of the input variables on which the gradient is
|
|
calculated. d should be a subset of the input labels. If None, all the
|
|
input variables are considered. Default is None.
|
|
|
|
:return: the gradient tensor.
|
|
:rtype: LabelTensor
|
|
"""
|
|
|
|
def grad_scalar_output(output_, input_, d):
|
|
"""
|
|
Perform gradient operation for a scalar output.
|
|
|
|
:param LabelTensor output_: the output tensor onto which computing the
|
|
gradient. It has to be a column tensor.
|
|
:param LabelTensor input_: the input tensor with respect to which
|
|
computing the gradient.
|
|
:param list(str) d: the name of the input variables on which the
|
|
gradient is calculated. d should be a subset of the input labels. If
|
|
None, all the input variables are considered. Default is None.
|
|
|
|
:raises RuntimeError: a vectorial function is passed.
|
|
:raises RuntimeError: missing derivative labels.
|
|
:return: the gradient tensor.
|
|
:rtype: LabelTensor
|
|
"""
|
|
|
|
if len(output_.labels) != 1:
|
|
raise RuntimeError("only scalar function can be differentiated")
|
|
if not all([di in input_.labels for di in d]):
|
|
raise RuntimeError("derivative labels missing from input tensor")
|
|
|
|
output_fieldname = output_.labels[0]
|
|
gradients = torch.autograd.grad(
|
|
output_,
|
|
input_,
|
|
grad_outputs=torch.ones(
|
|
output_.size(), dtype=output_.dtype, device=output_.device
|
|
),
|
|
create_graph=True,
|
|
retain_graph=True,
|
|
allow_unused=True,
|
|
)[0]
|
|
|
|
gradients.labels = input_.labels
|
|
gradients = gradients.extract(d)
|
|
gradients.labels = [f"d{output_fieldname}d{i}" for i in d]
|
|
|
|
return gradients
|
|
|
|
if not isinstance(input_, LabelTensor):
|
|
raise TypeError
|
|
|
|
if d is None:
|
|
d = input_.labels
|
|
|
|
if components is None:
|
|
components = output_.labels
|
|
|
|
if output_.shape[1] == 1: # scalar output ################################
|
|
|
|
if components != output_.labels:
|
|
raise RuntimeError
|
|
gradients = grad_scalar_output(output_, input_, d)
|
|
|
|
elif output_.shape[
|
|
output_.ndim - 1] >= 2: # vector output ##############################
|
|
tensor_to_cat = []
|
|
for i, c in enumerate(components):
|
|
c_output = output_.extract([c])
|
|
tensor_to_cat.append(grad_scalar_output(c_output, input_, d))
|
|
gradients = LabelTensor.cat(tensor_to_cat, dim=output_.tensor.ndim - 1)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return gradients
|
|
|
|
|
|
def div(output_, input_, components=None, d=None):
|
|
"""
|
|
Perform divergence operation. The operator works for vectorial functions,
|
|
with multiple input coordinates.
|
|
|
|
:param LabelTensor output_: the output tensor onto which computing the
|
|
divergence.
|
|
:param LabelTensor input_: the input tensor with respect to which computing
|
|
the divergence.
|
|
:param list(str) components: the name of the output variables to calculate
|
|
the divergence for. It should be a subset of the output labels. If None,
|
|
all the output variables are considered. Default is None.
|
|
:param list(str) d: the name of the input variables on which the divergence
|
|
is calculated. d should be a subset of the input labels. If None, all
|
|
the input variables are considered. Default is None.
|
|
|
|
:raises TypeError: div operator works only for LabelTensor.
|
|
:raises ValueError: div operator works only for vector fields.
|
|
:raises ValueError: div operator must derive all components with
|
|
respect to all coordinates.
|
|
:return: the divergenge tensor.
|
|
:rtype: LabelTensor
|
|
"""
|
|
if not isinstance(input_, LabelTensor):
|
|
raise TypeError
|
|
|
|
if d is None:
|
|
d = input_.labels
|
|
|
|
if components is None:
|
|
components = output_.labels
|
|
|
|
if output_.shape[1] < 2 or len(components) < 2:
|
|
raise ValueError("div supported only for vector fields")
|
|
|
|
if len(components) != len(d):
|
|
raise ValueError
|
|
|
|
grad_output = grad(output_, input_, components, d)
|
|
labels = [None] * len(components)
|
|
tensors_to_sum = []
|
|
for i, (c, d) in enumerate(zip(components, d)):
|
|
c_fields = f"d{c}d{d}"
|
|
tensors_to_sum.append(grad_output.extract(c_fields))
|
|
labels[i] = c_fields
|
|
div_result = LabelTensor.summation(tensors_to_sum)
|
|
return div_result
|
|
|
|
|
|
def laplacian(output_, input_, components=None, d=None, method="std"):
|
|
"""
|
|
Compute Laplace operator. The operator works for vectorial and
|
|
scalar functions, with multiple input coordinates.
|
|
|
|
:param LabelTensor output_: the output tensor onto which computing the
|
|
Laplacian.
|
|
:param LabelTensor input_: the input tensor with respect to which computing
|
|
the Laplacian.
|
|
:param list(str) components: the name of the output variables to calculate
|
|
the Laplacian for. It should be a subset of the output labels. If None,
|
|
all the output variables are considered. Default is None.
|
|
:param list(str) d: the name of the input variables on which the Laplacian
|
|
is calculated. d should be a subset of the input labels. If None, all
|
|
the input variables are considered. Default is None.
|
|
:param str method: used method to calculate Laplacian, defaults to 'std'.
|
|
|
|
:raises NotImplementedError: 'divgrad' not implemented as method.
|
|
:return: The tensor containing the result of the Laplacian operator.
|
|
:rtype: LabelTensor
|
|
"""
|
|
|
|
def scalar_laplace(output_, input_, components, d):
|
|
"""
|
|
Compute Laplace operator for a scalar output.
|
|
|
|
:param LabelTensor output_: the output tensor onto which computing the
|
|
Laplacian. It has to be a column tensor.
|
|
:param LabelTensor input_: the input tensor with respect to which
|
|
computing the Laplacian.
|
|
:param list(str) components: the name of the output variables to
|
|
calculate the Laplacian for. It should be a subset of the output
|
|
labels. If None, all the output variables are considered.
|
|
:param list(str) d: the name of the input variables on which the
|
|
Laplacian is computed. d should be a subset of the input labels.
|
|
If None, all the input variables are considered. Default is None.
|
|
|
|
:return: The tensor containing the result of the Laplacian operator.
|
|
:rtype: LabelTensor
|
|
"""
|
|
|
|
grad_output = grad(output_, input_, components=components, d=d)
|
|
result = torch.zeros(output_.shape[0], 1, device=output_.device)
|
|
|
|
for i, label in enumerate(grad_output.labels):
|
|
gg = grad(grad_output, input_, d=d, components=[label])
|
|
result[:, 0] += super(torch.Tensor, gg.T).__getitem__(i)
|
|
|
|
return result
|
|
|
|
if d is None:
|
|
d = input_.labels
|
|
|
|
if components is None:
|
|
components = output_.labels
|
|
|
|
if method == "divgrad":
|
|
raise NotImplementedError("divgrad not implemented as method")
|
|
# TODO fix
|
|
# grad_output = grad(output_, input_, components, d)
|
|
# result = div(grad_output, input_, d=d)
|
|
|
|
elif method == "std":
|
|
if len(components) == 1:
|
|
# result = scalar_laplace(output_, input_, components, d) # TODO check (from 0.1)
|
|
grad_output = grad(output_, input_, components=components, d=d)
|
|
to_append_tensors = []
|
|
for i, label in enumerate(grad_output.labels):
|
|
gg = grad(grad_output, input_, d=d, components=[label])
|
|
to_append_tensors.append(gg.extract([gg.labels[i]]))
|
|
labels = [f"dd{components[0]}"]
|
|
result = LabelTensor.summation(tensors=to_append_tensors)
|
|
result.labels = labels
|
|
else:
|
|
# result = torch.empty( # TODO check (from 0.1)
|
|
# size=(input_.shape[0], len(components)),
|
|
# dtype=output_.dtype,
|
|
# device=output_.device,
|
|
# )
|
|
# labels = [None] * len(components)
|
|
# for idx, c in enumerate(components):
|
|
# result[:, idx] = scalar_laplace(output_, input_, c, d).flatten()
|
|
# labels[idx] = f"dd{c}"
|
|
|
|
# result = result.as_subclass(LabelTensor)
|
|
# result.labels = labels
|
|
result = torch.empty(
|
|
input_.shape[0], len(components), device=output_.device
|
|
)
|
|
labels = [None] * len(components)
|
|
to_append_tensors = [None] * len(components)
|
|
for idx, (ci, di) in enumerate(zip(components, d)):
|
|
|
|
if not isinstance(ci, list):
|
|
ci = [ci]
|
|
if not isinstance(di, list):
|
|
di = [di]
|
|
|
|
grad_output = grad(output_, input_, components=ci, d=di)
|
|
result[:, idx] = grad(grad_output, input_, d=di).flatten()
|
|
to_append_tensors[idx] = grad(grad_output, input_, d=di)
|
|
labels[idx] = f"dd{ci[0]}dd{di[0]}"
|
|
result = LabelTensor.cat(tensors=to_append_tensors,
|
|
dim=output_.tensor.ndim - 1)
|
|
result.labels = labels
|
|
return result
|
|
|
|
|
|
def advection(output_, input_, velocity_field, components=None, d=None):
|
|
"""
|
|
Perform advection operation. The operator works for vectorial functions,
|
|
with multiple input coordinates.
|
|
|
|
:param LabelTensor output_: the output tensor onto which computing the
|
|
advection.
|
|
:param LabelTensor input_: the input tensor with respect to which computing
|
|
the advection.
|
|
:param str velocity_field: the name of the output variables which is used
|
|
as velocity field. It should be a subset of the output labels.
|
|
:param list(str) components: the name of the output variables to calculate
|
|
the Laplacian for. It should be a subset of the output labels. If None,
|
|
all the output variables are considered. Default is None.
|
|
:param list(str) d: the name of the input variables on which the advection
|
|
is calculated. d should be a subset of the input labels. If None, all
|
|
the input variables are considered. Default is None.
|
|
:return: the tensor containing the result of the advection operator.
|
|
:rtype: LabelTensor
|
|
"""
|
|
if d is None:
|
|
d = input_.labels
|
|
|
|
if components is None:
|
|
components = output_.labels
|
|
|
|
tmp = (
|
|
grad(output_, input_, components, d)
|
|
.reshape(-1, len(components), len(d))
|
|
.transpose(0, 1)
|
|
)
|
|
|
|
tmp *= output_.extract(velocity_field)
|
|
return tmp.sum(dim=2).T
|