* Modify domain by adding sample_mode, variables as property * Small change concatenate -> cat in lno/avno * Create different factory classes for conditions
119 lines
4.7 KiB
Python
119 lines
4.7 KiB
Python
"""Module Averaging Neural Operator."""
|
|
|
|
import torch
|
|
from torch import nn, cat
|
|
from .layers import AVNOBlock
|
|
from .base_no import KernelNeuralOperator
|
|
from pina.utils import check_consistency
|
|
|
|
|
|
class AveragingNeuralOperator(KernelNeuralOperator):
|
|
"""
|
|
Implementation of Averaging Neural Operator.
|
|
|
|
Averaging Neural Operator is a general architecture for
|
|
learning Operators. Unlike traditional machine learning methods
|
|
AveragingNeuralOperator is designed to map entire functions
|
|
to other functions. It can be trained with Supervised learning strategies.
|
|
AveragingNeuralOperator does convolution by performing a field average.
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Lanthaler S. Li, Z., Kovachki,
|
|
Stuart, A. (2020). *The Nonlocal Neural Operator:
|
|
Universal Approximation*.
|
|
DOI: `arXiv preprint arXiv:2304.13221.
|
|
<https://arxiv.org/abs/2304.13221>`_
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
lifting_net,
|
|
projecting_net,
|
|
field_indices,
|
|
coordinates_indices,
|
|
n_layers=4,
|
|
func=nn.GELU,
|
|
):
|
|
"""
|
|
:param torch.nn.Module lifting_net: The neural network for lifting
|
|
the input. It must take as input the input field and the coordinates
|
|
at which the input field is avaluated. The output of the lifting
|
|
net is chosen as embedding dimension of the problem
|
|
:param torch.nn.Module projecting_net: The neural network for
|
|
projecting the output. It must take as input the embedding dimension
|
|
(output of the ``lifting_net``) plus the dimension
|
|
of the coordinates.
|
|
:param list[str] field_indices: the label of the fields
|
|
in the input tensor.
|
|
:param list[str] coordinates_indices: the label of the
|
|
coordinates in the input tensor.
|
|
:param int n_layers: number of hidden layers. Default is 4.
|
|
:param torch.nn.Module func: the activation function to use,
|
|
default to torch.nn.GELU.
|
|
"""
|
|
|
|
# check consistency
|
|
check_consistency(field_indices, str)
|
|
check_consistency(coordinates_indices, str)
|
|
check_consistency(n_layers, int)
|
|
check_consistency(func, nn.Module, subclass=True)
|
|
|
|
# check hidden dimensions match
|
|
input_lifting_net = next(lifting_net.parameters()).size()[-1]
|
|
output_lifting_net = lifting_net(
|
|
torch.rand(size=next(lifting_net.parameters()).size())
|
|
).shape[-1]
|
|
projecting_net_input = next(projecting_net.parameters()).size()[-1]
|
|
|
|
if len(field_indices) + len(coordinates_indices) != input_lifting_net:
|
|
raise ValueError(
|
|
"The lifting_net must take as input the "
|
|
"coordinates vector and the field vector."
|
|
)
|
|
|
|
if (
|
|
output_lifting_net + len(coordinates_indices)
|
|
!= projecting_net_input
|
|
):
|
|
raise ValueError(
|
|
"The projecting_net input must be equal to"
|
|
"the embedding dimension (which is the output) "
|
|
"of the lifting_net plus the dimension of the "
|
|
"coordinates, i.e. len(coordinates_indices)."
|
|
)
|
|
|
|
# assign
|
|
self.coordinates_indices = coordinates_indices
|
|
self.field_indices = field_indices
|
|
integral_net = nn.Sequential(
|
|
*[AVNOBlock(output_lifting_net, func) for _ in range(n_layers)]
|
|
)
|
|
super().__init__(lifting_net, integral_net, projecting_net)
|
|
|
|
def forward(self, x):
|
|
r"""
|
|
Forward computation for Averaging Neural Operator. It performs a
|
|
lifting of the input by the ``lifting_net``. Then different layers
|
|
of Averaging Neural Operator Blocks are applied.
|
|
Finally the output is projected to the final dimensionality
|
|
by the ``projecting_net``.
|
|
|
|
:param torch.Tensor x: The input tensor for fourier block,
|
|
depending on ``dimension`` in the initialization. It expects
|
|
a tensor :math:`B \times N \times D`,
|
|
where :math:`B` is the batch_size, :math:`N` the number of points
|
|
in the mesh, :math:`D` the dimension of the problem, i.e. the sum
|
|
of ``len(coordinates_indices)+len(field_indices)``.
|
|
:return: The output tensor obtained from Average Neural Operator.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
points_tmp = x.extract(self.coordinates_indices)
|
|
new_batch = x.extract(self.field_indices)
|
|
new_batch = cat((new_batch, points_tmp), dim=-1)
|
|
new_batch = self._lifting_operator(new_batch)
|
|
new_batch = self._integral_kernels(new_batch)
|
|
new_batch = cat((new_batch, points_tmp), dim=-1)
|
|
new_batch = self._projection_operator(new_batch)
|
|
return new_batch
|