434 lines
14 KiB
Python
434 lines
14 KiB
Python
""" Module for LabelTensor """
|
|
|
|
from copy import deepcopy
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
|
|
|
|
# class LabelTensor(torch.Tensor):
|
|
# """Torch tensor with a label for any column."""
|
|
|
|
# @staticmethod
|
|
# def __new__(cls, x, labels, *args, **kwargs):
|
|
# return super().__new__(cls, x, *args, **kwargs)
|
|
|
|
# def __init__(self, x, labels):
|
|
# """
|
|
# Construct a `LabelTensor` by passing a tensor and a list of column
|
|
# labels. Such labels uniquely identify the columns of the tensor,
|
|
# allowing for an easier manipulation.
|
|
|
|
# :param torch.Tensor x: The data tensor.
|
|
# :param labels: The labels of the columns.
|
|
# :type labels: str | list(str) | tuple(str)
|
|
|
|
# :Example:
|
|
# >>> from pina import LabelTensor
|
|
# >>> tensor = LabelTensor(torch.rand((2000, 3)), ['a', 'b', 'c'])
|
|
# >>> tensor
|
|
# tensor([[6.7116e-02, 4.8892e-01, 8.9452e-01],
|
|
# [9.2392e-01, 8.2065e-01, 4.1986e-04],
|
|
# [8.9266e-01, 5.5446e-01, 6.3500e-01],
|
|
# ...,
|
|
# [5.8194e-01, 9.4268e-01, 4.1841e-01],
|
|
# [1.0246e-01, 9.5179e-01, 3.7043e-02],
|
|
# [9.6150e-01, 8.0656e-01, 8.3824e-01]])
|
|
# >>> tensor.extract('a')
|
|
# tensor([[0.0671],
|
|
# [0.9239],
|
|
# [0.8927],
|
|
# ...,
|
|
# [0.5819],
|
|
# [0.1025],
|
|
# [0.9615]])
|
|
# >>> tensor['a']
|
|
# tensor([[0.0671],
|
|
# [0.9239],
|
|
# [0.8927],
|
|
# ...,
|
|
# [0.5819],
|
|
# [0.1025],
|
|
# [0.9615]])
|
|
# >>> tensor.extract(['a', 'b'])
|
|
# tensor([[0.0671, 0.4889],
|
|
# [0.9239, 0.8207],
|
|
# [0.8927, 0.5545],
|
|
# ...,
|
|
# [0.5819, 0.9427],
|
|
# [0.1025, 0.9518],
|
|
# [0.9615, 0.8066]])
|
|
# >>> tensor.extract(['b', 'a'])
|
|
# tensor([[0.4889, 0.0671],
|
|
# [0.8207, 0.9239],
|
|
# [0.5545, 0.8927],
|
|
# ...,
|
|
# [0.9427, 0.5819],
|
|
# [0.9518, 0.1025],
|
|
# [0.8066, 0.9615]])
|
|
# """
|
|
# if x.ndim == 1:
|
|
# x = x.reshape(-1, 1)
|
|
|
|
# if isinstance(labels, str):
|
|
# labels = [labels]
|
|
|
|
# if len(labels) != x.shape[-1]:
|
|
# raise ValueError(
|
|
# "the tensor has not the same number of columns of "
|
|
# "the passed labels."
|
|
# )
|
|
# self._labels = labels
|
|
|
|
# def __deepcopy__(self, __):
|
|
# """
|
|
# Implements deepcopy for label tensor. By default it stores the
|
|
# current labels and use the :meth:`~torch._tensor.Tensor.__deepcopy__`
|
|
# method for creating a new :class:`pina.label_tensor.LabelTensor`.
|
|
|
|
# :param __: Placeholder parameter.
|
|
# :type __: None
|
|
# :return: The deep copy of the :class:`pina.label_tensor.LabelTensor`.
|
|
# :rtype: LabelTensor
|
|
# """
|
|
# labels = self.labels
|
|
# copy_tensor = deepcopy(self.tensor)
|
|
# return LabelTensor(copy_tensor, labels)
|
|
|
|
# @property
|
|
# def labels(self):
|
|
# """Property decorator for labels
|
|
|
|
# :return: labels of self
|
|
# :rtype: list
|
|
# """
|
|
# return self._labels
|
|
|
|
# @labels.setter
|
|
# def labels(self, labels):
|
|
# if len(labels) != self.shape[self.ndim - 1]: # small check
|
|
# raise ValueError(
|
|
# "The tensor has not the same number of columns of "
|
|
# "the passed labels."
|
|
# )
|
|
|
|
# self._labels = labels # assign the label
|
|
|
|
# @staticmethod
|
|
# def vstack(label_tensors):
|
|
# """
|
|
# Stack tensors vertically. For more details, see
|
|
# :meth:`torch.vstack`.
|
|
|
|
# :param list(LabelTensor) label_tensors: the tensors to stack. They need
|
|
# to have equal labels.
|
|
# :return: the stacked tensor
|
|
# :rtype: LabelTensor
|
|
# """
|
|
# if len(label_tensors) == 0:
|
|
# return []
|
|
|
|
# all_labels = [label for lt in label_tensors for label in lt.labels]
|
|
# if set(all_labels) != set(label_tensors[0].labels):
|
|
# raise RuntimeError("The tensors to stack have different labels")
|
|
|
|
# labels = label_tensors[0].labels
|
|
# tensors = [lt.extract(labels) for lt in label_tensors]
|
|
# return LabelTensor(torch.vstack(tensors), labels)
|
|
|
|
# def clone(self, *args, **kwargs):
|
|
# """
|
|
# Clone the LabelTensor. For more details, see
|
|
# :meth:`torch.Tensor.clone`.
|
|
|
|
# :return: A copy of the tensor.
|
|
# :rtype: LabelTensor
|
|
# """
|
|
# # # used before merging
|
|
# # try:
|
|
# # out = LabelTensor(super().clone(*args, **kwargs), self.labels)
|
|
# # except:
|
|
# # out = super().clone(*args, **kwargs)
|
|
# out = LabelTensor(super().clone(*args, **kwargs), self.labels)
|
|
# return out
|
|
|
|
# def to(self, *args, **kwargs):
|
|
# """
|
|
# Performs Tensor dtype and/or device conversion. For more details, see
|
|
# :meth:`torch.Tensor.to`.
|
|
# """
|
|
# tmp = super().to(*args, **kwargs)
|
|
# new = self.__class__.clone(self)
|
|
# new.data = tmp.data
|
|
# return new
|
|
|
|
# def select(self, *args, **kwargs):
|
|
# """
|
|
# Performs Tensor selection. For more details, see :meth:`torch.Tensor.select`.
|
|
# """
|
|
# tmp = super().select(*args, **kwargs)
|
|
# tmp._labels = self._labels
|
|
# return tmp
|
|
|
|
# def cuda(self, *args, **kwargs):
|
|
# """
|
|
# Send Tensor to cuda. For more details, see :meth:`torch.Tensor.cuda`.
|
|
# """
|
|
# tmp = super().cuda(*args, **kwargs)
|
|
# new = self.__class__.clone(self)
|
|
# new.data = tmp.data
|
|
# return new
|
|
|
|
# def cpu(self, *args, **kwargs):
|
|
# """
|
|
# Send Tensor to cpu. For more details, see :meth:`torch.Tensor.cpu`.
|
|
# """
|
|
# tmp = super().cpu(*args, **kwargs)
|
|
# new = self.__class__.clone(self)
|
|
# new.data = tmp.data
|
|
# return new
|
|
|
|
# def extract(self, label_to_extract):
|
|
# """
|
|
# Extract the subset of the original tensor by returning all the columns
|
|
# corresponding to the passed ``label_to_extract``.
|
|
|
|
# :param label_to_extract: The label(s) to extract.
|
|
# :type label_to_extract: str | list(str) | tuple(str)
|
|
# :raises TypeError: Labels are not ``str``.
|
|
# :raises ValueError: Label to extract is not in the labels ``list``.
|
|
# """
|
|
|
|
# if isinstance(label_to_extract, str):
|
|
# label_to_extract = [label_to_extract]
|
|
# elif isinstance(label_to_extract, (tuple, list)): # TODO
|
|
# pass
|
|
# else:
|
|
# raise TypeError(
|
|
# "`label_to_extract` should be a str, or a str iterator"
|
|
# )
|
|
|
|
# indeces = []
|
|
# for f in label_to_extract:
|
|
# try:
|
|
# indeces.append(self.labels.index(f))
|
|
# except ValueError:
|
|
# raise ValueError(f"`{f}` not in the labels list")
|
|
|
|
# new_data = super(Tensor, self.T).__getitem__(indeces).T
|
|
# new_labels = [self.labels[idx] for idx in indeces]
|
|
|
|
# extracted_tensor = new_data.as_subclass(LabelTensor)
|
|
# extracted_tensor.labels = new_labels
|
|
|
|
# return extracted_tensor
|
|
|
|
# def detach(self):
|
|
# detached = super().detach()
|
|
# if hasattr(self, "_labels"):
|
|
# detached._labels = self._labels
|
|
# return detached
|
|
|
|
|
|
# def append(self, lt, mode="std"):
|
|
# """
|
|
# Return a copy of the merged tensors.
|
|
|
|
# :param LabelTensor lt: The tensor to merge.
|
|
# :param str mode: {'std', 'first', 'cross'}
|
|
# :return: The merged tensors.
|
|
# :rtype: LabelTensor
|
|
# """
|
|
# if set(self.labels).intersection(lt.labels):
|
|
# raise RuntimeError("The tensors to merge have common labels")
|
|
|
|
# new_labels = self.labels + lt.labels
|
|
# if mode == "std":
|
|
# new_tensor = torch.cat((self, lt), dim=1)
|
|
# elif mode == "first":
|
|
# raise NotImplementedError
|
|
# elif mode == "cross":
|
|
# tensor1 = self
|
|
# tensor2 = lt
|
|
# n1 = tensor1.shape[0]
|
|
# n2 = tensor2.shape[0]
|
|
|
|
# tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
|
|
# tensor2 = LabelTensor(
|
|
# tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels
|
|
# )
|
|
# new_tensor = torch.cat((tensor1, tensor2), dim=1)
|
|
|
|
# new_tensor = new_tensor.as_subclass(LabelTensor)
|
|
# new_tensor.labels = new_labels
|
|
# return new_tensor
|
|
|
|
# def __getitem__(self, index):
|
|
# """
|
|
# Return a copy of the selected tensor.
|
|
# """
|
|
|
|
# if isinstance(index, str) or (
|
|
# isinstance(index, (tuple, list))
|
|
# and all(isinstance(a, str) for a in index)
|
|
# ):
|
|
# return self.extract(index)
|
|
|
|
# selected_lt = super(Tensor, self).__getitem__(index)
|
|
|
|
# try:
|
|
# len_index = len(index)
|
|
# except TypeError:
|
|
# len_index = 1
|
|
|
|
# if isinstance(index, int) or len_index == 1:
|
|
# if selected_lt.ndim == 1:
|
|
# selected_lt = selected_lt.reshape(1, -1)
|
|
# if hasattr(self, "labels"):
|
|
# selected_lt.labels = self.labels
|
|
# elif len_index == 2:
|
|
# if selected_lt.ndim == 1:
|
|
# selected_lt = selected_lt.reshape(-1, 1)
|
|
# if hasattr(self, "labels"):
|
|
# if isinstance(index[1], list):
|
|
# selected_lt.labels = [self.labels[i] for i in index[1]]
|
|
# else:
|
|
# selected_lt.labels = self.labels[index[1]]
|
|
# else:
|
|
# selected_lt.labels = self.labels
|
|
|
|
# return selected_lt
|
|
|
|
|
|
# def __str__(self):
|
|
# if hasattr(self, "labels"):
|
|
# s = f"labels({str(self.labels)})\n"
|
|
# else:
|
|
# s = "no labels\n"
|
|
# s += super().__str__()
|
|
# return s
|
|
|
|
def issubset(a, b):
|
|
"""
|
|
Check if a is a subset of b.
|
|
"""
|
|
return set(a).issubset(set(b))
|
|
|
|
class LabelTensor(torch.Tensor):
|
|
"""Torch tensor with a label for any column."""
|
|
|
|
@staticmethod
|
|
def __new__(cls, x, labels, *args, **kwargs):
|
|
return super().__new__(cls, x, *args, **kwargs)
|
|
|
|
@property
|
|
def tensor(self):
|
|
return self.as_subclass(Tensor)
|
|
|
|
def __len__(self) -> int:
|
|
return super().__len__()
|
|
|
|
def __init__(self, x, labels):
|
|
"""
|
|
Construct a `LabelTensor` by passing a dict of the labels
|
|
|
|
:Example:
|
|
>>> from pina import LabelTensor
|
|
>>> tensor = LabelTensor(
|
|
>>> torch.rand((2000, 3)),
|
|
{1: {"name": "space"['a', 'b', 'c'])
|
|
|
|
"""
|
|
from .utils import check_consistency
|
|
check_consistency(labels, dict)
|
|
|
|
self.labels = {
|
|
idx_: {
|
|
'dof': range(x.shape[idx_]),
|
|
'name': idx_
|
|
} for idx_ in range(x.ndim)
|
|
}
|
|
self.labels.update(labels)
|
|
|
|
|
|
def extract(self, label_to_extract):
|
|
"""
|
|
Extract the subset of the original tensor by returning all the columns
|
|
corresponding to the passed ``label_to_extract``.
|
|
|
|
:param label_to_extract: The label(s) to extract.
|
|
:type label_to_extract: str | list(str) | tuple(str)
|
|
:raises TypeError: Labels are not ``str``.
|
|
:raises ValueError: Label to extract is not in the labels ``list``.
|
|
"""
|
|
if isinstance(label_to_extract, (int, str)):
|
|
label_to_extract = [label_to_extract]
|
|
if isinstance(label_to_extract, (tuple, list)):
|
|
|
|
for k, v in self.labels.items():
|
|
if issubset(label_to_extract, v['dof']):
|
|
break
|
|
|
|
label_to_extract = {v['name']: label_to_extract}
|
|
|
|
for k, v in label_to_extract.items():
|
|
if isinstance(v, (int, str)):
|
|
label_to_extract[k] = [v]
|
|
|
|
indeces = []
|
|
for dim in range(self.ndim):
|
|
|
|
boolean_idx = [True] * self.shape[dim]
|
|
|
|
for dim_to_extract, dof_to_extract in label_to_extract.items():
|
|
if dim_to_extract == self.labels[dim]['name']:
|
|
boolean_idx = [False] * self.shape[dim]
|
|
for label in dof_to_extract:
|
|
idx_to_keep = self.labels[dim]['dof'].index(label)
|
|
boolean_idx[idx_to_keep] = True
|
|
|
|
boolean_idx = torch.Tensor(boolean_idx).bool()
|
|
|
|
indeces.append(boolean_idx)
|
|
|
|
final_shapes = [sum(idx) for idx in indeces]
|
|
grids = torch.meshgrid(*indeces)
|
|
|
|
ii = grids[0]
|
|
for grid in grids[1:]:
|
|
ii = torch.logical_and(ii, grid)
|
|
|
|
new_tensor = self.tensor[ii].reshape(*final_shapes)
|
|
|
|
return LabelTensor(new_tensor, label_to_extract)
|
|
|
|
def __str__(self):
|
|
s = ''
|
|
for key, value in self.labels.items():
|
|
s += f"{key}: {value}\n"
|
|
s += '\n'
|
|
s += super().__str__()
|
|
return s
|
|
|
|
@staticmethod
|
|
def stack(tensors):
|
|
"""
|
|
"""
|
|
if len(tensors) == 0:
|
|
return []
|
|
|
|
if len(tensors) == 1:
|
|
return tensors[0]
|
|
|
|
raise NotImplementedError
|
|
labels = [tensor.labels for tensor in tensors]
|
|
print(labels)
|
|
|
|
def requires_grad_(self, mode=True):
|
|
lt = super().requires_grad_(mode)
|
|
lt.labels = self.labels
|
|
return lt
|
|
|
|
@property
|
|
def dtype(self):
|
|
return super().dtype |