Refactoring for 0.2 * Data module, data loader and dataset * Refactor LabelTensor * Refactor solvers Co-authored-by: dario-coscia <dariocos99@gmail.com>
144 lines
4.0 KiB
Python
144 lines
4.0 KiB
Python
import torch
|
|
import pytest
|
|
from pina.problem import AbstractProblem, SpatialProblem
|
|
from pina import Condition, LabelTensor
|
|
from pina.solvers import SupervisedSolver
|
|
from pina.model import FeedForward
|
|
from pina.equation.equation import Equation
|
|
from pina.equation.equation_factory import FixedValue
|
|
from pina.operators import laplacian
|
|
from pina.domain import CartesianDomain
|
|
from pina.trainer import Trainer
|
|
|
|
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['u_0', 'u_1'])
|
|
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
|
|
|
|
|
class NeuralOperatorProblem(AbstractProblem):
|
|
input_variables = ['u_0', 'u_1']
|
|
output_variables = ['u']
|
|
|
|
conditions = {
|
|
'data': Condition(input_points=in_, output_points=out_),
|
|
}
|
|
|
|
|
|
class myFeature(torch.nn.Module):
|
|
"""
|
|
Feature: sin(x)
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(myFeature, self).__init__()
|
|
|
|
def forward(self, x):
|
|
t = (torch.sin(x.extract(['u_0']) * torch.pi) *
|
|
torch.sin(x.extract(['u_1']) * torch.pi))
|
|
return LabelTensor(t, ['sin(x)sin(y)'])
|
|
|
|
|
|
problem = NeuralOperatorProblem()
|
|
extra_feats = [myFeature()]
|
|
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
|
model_extra_feats = FeedForward(
|
|
len(problem.input_variables) + 1, len(problem.output_variables))
|
|
|
|
|
|
def test_constructor():
|
|
SupervisedSolver(problem=problem, model=model)
|
|
|
|
|
|
test_constructor()
|
|
|
|
|
|
def laplace_equation(input_, output_):
|
|
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
|
torch.sin(input_.extract(['y']) * torch.pi))
|
|
delta_u = laplacian(output_.extract(['u']), input_)
|
|
return delta_u - force_term
|
|
|
|
|
|
my_laplace = Equation(laplace_equation)
|
|
|
|
|
|
class Poisson(SpatialProblem):
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
|
|
conditions = {
|
|
'gamma1':
|
|
Condition(domain=CartesianDomain({
|
|
'x': [0, 1],
|
|
'y': 1
|
|
}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma2':
|
|
Condition(domain=CartesianDomain({
|
|
'x': [0, 1],
|
|
'y': 0
|
|
}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma3':
|
|
Condition(domain=CartesianDomain({
|
|
'x': 1,
|
|
'y': [0, 1]
|
|
}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma4':
|
|
Condition(domain=CartesianDomain({
|
|
'x': 0,
|
|
'y': [0, 1]
|
|
}),
|
|
equation=FixedValue(0.0)),
|
|
'D':
|
|
Condition(domain=CartesianDomain({
|
|
'x': [0, 1],
|
|
'y': [0, 1]
|
|
}),
|
|
equation=my_laplace),
|
|
'data':
|
|
Condition(input_points=in_, output_points=out_)
|
|
}
|
|
|
|
def poisson_sol(self, pts):
|
|
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
|
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
|
|
|
|
truth_solution = poisson_sol
|
|
|
|
|
|
def test_wrong_constructor():
|
|
poisson_problem = Poisson()
|
|
with pytest.raises(ValueError):
|
|
SupervisedSolver(problem=poisson_problem, model=model)
|
|
|
|
|
|
def test_train_cpu():
|
|
solver = SupervisedSolver(problem=problem, model=model)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=200,
|
|
accelerator='gpu',
|
|
batch_size=5,
|
|
train_size=1,
|
|
test_size=0.,
|
|
val_size=0.)
|
|
trainer.train()
|
|
test_train_cpu()
|
|
|
|
|
|
def test_extra_features_constructor():
|
|
SupervisedSolver(problem=problem,
|
|
model=model_extra_feats,
|
|
extra_features=extra_feats)
|
|
|
|
|
|
def test_extra_features_train_cpu():
|
|
solver = SupervisedSolver(problem=problem,
|
|
model=model_extra_feats,
|
|
extra_features=extra_feats)
|
|
trainer = Trainer(solver=solver,
|
|
max_epochs=200,
|
|
accelerator='gpu',
|
|
batch_size=5)
|
|
trainer.train()
|