60 lines
2.0 KiB
Python
60 lines
2.0 KiB
Python
import numpy as np
|
|
import torch
|
|
|
|
from pina import Span, Condition
|
|
from pina.problem import SpatialProblem, ParametricProblem
|
|
from pina.operators import grad, nabla
|
|
|
|
|
|
class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem):
|
|
|
|
xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
|
amin, amax = 0.0001, 1
|
|
mumin, mumax = 0.5, 3
|
|
mu_range = [mumin, mumax]
|
|
a_range = [amin, amax]
|
|
x_range = [xmin, xmax]
|
|
y_range = [ymin, ymax]
|
|
|
|
spatial_variables = ['x1', 'x2']
|
|
parameters = ['mu', 'alpha']
|
|
output_variables = ['u', 'p', 'y']
|
|
domain = Span({
|
|
'x1': x_range, 'x2': y_range, 'mu': mu_range, 'alpha': a_range})
|
|
|
|
|
|
def term1(input_, output_):
|
|
laplace_p = nabla(output_, input_, components=['p'], d=['x1', 'x2'])
|
|
return output_.extract(['y']) - input_.extract(['mu']) - laplace_p
|
|
|
|
def term2(input_, output_):
|
|
laplace_y = nabla(output_, input_, components=['y'], d=['x1', 'x2'])
|
|
return - laplace_y - output_.extract(['u_param'])
|
|
|
|
def state_dirichlet(input_, output_):
|
|
y_exp = 0.0
|
|
return output_.extract(['y']) - y_exp
|
|
|
|
def adj_dirichlet(input_, output_):
|
|
p_exp = 0.0
|
|
return output_.extract(['p']) - p_exp
|
|
|
|
conditions = {
|
|
'gamma1': Condition(
|
|
Span({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}),
|
|
[state_dirichlet, adj_dirichlet]),
|
|
'gamma2': Condition(
|
|
Span({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}),
|
|
[state_dirichlet, adj_dirichlet]),
|
|
'gamma3': Condition(
|
|
Span({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
|
|
[state_dirichlet, adj_dirichlet]),
|
|
'gamma4': Condition(
|
|
Span({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
|
|
[state_dirichlet, adj_dirichlet]),
|
|
'D': Condition(
|
|
Span({'x1': x_range, 'x2': y_range,
|
|
'mu': mu_range, 'alpha': a_range}),
|
|
[term1, term2]),
|
|
}
|