* adding problems * add tests * update doc + formatting --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
38 lines
1.1 KiB
Python
38 lines
1.1 KiB
Python
"""Formulation of a Supervised Problem in PINA."""
|
|
|
|
from ..abstract_problem import AbstractProblem
|
|
from ... import Condition
|
|
from ... import Graph
|
|
|
|
|
|
class SupervisedProblem(AbstractProblem):
|
|
"""
|
|
Definition of a supervised learning problem in PINA.
|
|
|
|
This class provides a simple way to define a supervised problem
|
|
using a single condition of type
|
|
:class:`~pina.condition.input_target_condition.InputTargetCondition`.
|
|
|
|
:Example:
|
|
>>> import torch
|
|
>>> input_data = torch.rand((100, 10))
|
|
>>> output_data = torch.rand((100, 10))
|
|
>>> problem = SupervisedProblem(input_data, output_data)
|
|
"""
|
|
|
|
conditions = {}
|
|
output_variables = None
|
|
|
|
def __init__(self, input_, output_):
|
|
"""
|
|
Initialize the SupervisedProblem class.
|
|
|
|
:param input_: Input data of the problem.
|
|
:param output_: Output data of the problem.
|
|
:type output_: torch.Tensor | Graph
|
|
"""
|
|
if isinstance(input_, Graph):
|
|
input_ = input_.data
|
|
self.conditions["data"] = Condition(input=input_, target=output_)
|
|
super().__init__()
|