Files
PINA/examples/problems/parametric_elliptic_optimal_control_alpha_variable.py
2023-05-30 10:40:39 +02:00

78 lines
3.2 KiB
Python

import numpy as np
import torch
from pina import Span, Condition
from pina.problem import SpatialProblem, ParametricProblem
from pina.operators import grad, nabla
# ===================================================== #
# #
# This script implements the two dimensional #
# Parametric Elliptic Optimal Control problem. #
# The ParametricEllipticOptimalControl class is #
# inherited from TimeDependentProblem, SpatialProblem #
# and we denote: #
# u --> field variable #
# p --> field variable #
# y --> field variable #
# x1, x2 --> spatial variables #
# mu, alpha --> problem parameters #
# #
# More info in https://arxiv.org/pdf/2110.13530.pdf #
# Section 4.2 of the article #
# ===================================================== #
class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem):
# setting spatial variables ranges
xmin, xmax, ymin, ymax = -1, 1, -1, 1
x_range = [xmin, xmax]
y_range = [ymin, ymax]
# setting parameters range
amin, amax = 0.0001, 1
mumin, mumax = 0.5, 3
mu_range = [mumin, mumax]
a_range = [amin, amax]
# setting field variables
output_variables = ['u', 'p', 'y']
# setting spatial and parameter domain
spatial_domain = Span({'x1': x_range, 'x2': y_range})
parameter_domain = Span({'mu': mu_range, 'alpha': a_range})
# equation terms as in https://arxiv.org/pdf/2110.13530.pdf
def term1(input_, output_):
laplace_p = nabla(output_, input_, components=['p'], d=['x1', 'x2'])
return output_.extract(['y']) - input_.extract(['mu']) - laplace_p
def term2(input_, output_):
laplace_y = nabla(output_, input_, components=['y'], d=['x1', 'x2'])
return - laplace_y - output_.extract(['u_param'])
def state_dirichlet(input_, output_):
y_exp = 0.0
return output_.extract(['y']) - y_exp
def adj_dirichlet(input_, output_):
p_exp = 0.0
return output_.extract(['p']) - p_exp
# setting problem condition formulation
conditions = {
'gamma1': Condition(
location=Span({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}),
function=[state_dirichlet, adj_dirichlet]),
'gamma2': Condition(
location=Span({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}),
function=[state_dirichlet, adj_dirichlet]),
'gamma3': Condition(
location=Span({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
function=[state_dirichlet, adj_dirichlet]),
'gamma4': Condition(
location=Span({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
function=[state_dirichlet, adj_dirichlet]),
'D': Condition(
location=Span({'x1': x_range, 'x2': y_range,
'mu': mu_range, 'alpha': a_range}),
function=[term1, term2]),
}