67 lines
1.9 KiB
Python
67 lines
1.9 KiB
Python
import sys
|
|
import numpy as np
|
|
import torch
|
|
import argparse
|
|
from pina.pinn import PINN
|
|
from pina.ppinn import ParametricPINN as pPINN
|
|
from pina.label_tensor import LabelTensor
|
|
from torch.nn import ReLU, Tanh, Softplus
|
|
from problems.burgers import Burgers1D
|
|
from pina.deep_feed_forward import DeepFeedForward
|
|
|
|
from pina import Plotter
|
|
|
|
|
|
class myFeature(torch.nn.Module):
|
|
"""
|
|
Feature: sin(pi*x)
|
|
"""
|
|
def __init__(self, idx):
|
|
super(myFeature, self).__init__()
|
|
self.idx = idx
|
|
|
|
def forward(self, x):
|
|
return torch.sin(torch.pi * x[:, self.idx])
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Run PINA")
|
|
group = parser.add_mutually_exclusive_group(required=True)
|
|
group.add_argument("-s", "-save", action="store_true")
|
|
group.add_argument("-l", "-load", action="store_true")
|
|
parser.add_argument("id_run", help="number of run", type=int)
|
|
parser.add_argument("features", help="extra features", type=int)
|
|
args = parser.parse_args()
|
|
|
|
feat = [myFeature(0)] if args.features else []
|
|
|
|
burgers_problem = Burgers1D()
|
|
model = DeepFeedForward(
|
|
layers=[30, 20, 10, 5],
|
|
#layers=[8, 8, 8],
|
|
#layers=[16, 8, 4, 4],
|
|
#layers=[20, 4, 4, 4],
|
|
output_variables=burgers_problem.output_variables,
|
|
input_variables=burgers_problem.input_variables,
|
|
func=Softplus,
|
|
extra_features=feat
|
|
)
|
|
|
|
pinn = PINN(
|
|
burgers_problem,
|
|
model,
|
|
lr=0.006,
|
|
error_norm='mse',
|
|
regularizer=0,
|
|
lr_accelerate=None)
|
|
|
|
if args.s:
|
|
pinn.span_pts(2000, 'latin', ['D'])
|
|
pinn.span_pts(150, 'random', ['gamma1', 'gamma2', 'initia'])
|
|
pinn.train(5000, 100)
|
|
pinn.save_state('pina.burger.{}.{}'.format(args.id_run, args.features))
|
|
else:
|
|
pinn.load_state('pina.burger.{}.{}'.format(args.id_run, args.features))
|
|
plotter = Plotter()
|
|
plotter.plot(pinn)
|