44 lines
1.2 KiB
Python
44 lines
1.2 KiB
Python
import torch
|
|
|
|
from . import ConditionInterface
|
|
from ..label_tensor import LabelTensor
|
|
from ..graph import Graph
|
|
from ..utils import check_consistency
|
|
|
|
class DataConditionInterface(ConditionInterface):
|
|
"""
|
|
Condition for data. This condition must be used every
|
|
time a Unsupervised Loss is needed in the Solver. The conditionalvariable
|
|
can be passed as extra-input when the model learns a conditional
|
|
distribution
|
|
"""
|
|
|
|
__slots__ = ["data", "conditionalvariable"]
|
|
|
|
def __init__(self, data, conditionalvariable=None):
|
|
"""
|
|
TODO
|
|
"""
|
|
super().__init__()
|
|
self.data = data
|
|
self.conditionalvariable = conditionalvariable
|
|
self.condition_type = 'unsupervised'
|
|
|
|
@property
|
|
def data(self):
|
|
return self._data
|
|
|
|
@data.setter
|
|
def data(self, value):
|
|
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
|
|
self._data = value
|
|
|
|
@property
|
|
def conditionalvariable(self):
|
|
return self._conditionalvariable
|
|
|
|
@data.setter
|
|
def conditionalvariable(self, value):
|
|
if value is not None:
|
|
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
|
|
self._data = value |