Files
PINA/pina/data/dataset.py
Filippo Olivo 9c9d4fe7e4 Fix bug in Collector with Graph data (#456)
* Fix bug in Collector with Graph data
* Add comments in DataModule class and bug fix in collate
2025-03-19 17:46:35 +01:00

225 lines
7.3 KiB
Python

"""
This module provide basic data management functionalities
"""
import functools
import torch
from torch.utils.data import Dataset
from abc import abstractmethod
from torch_geometric.data import Batch, Data
from pina import LabelTensor
class PinaDatasetFactory:
"""
Factory class for the PINA dataset. Depending on the type inside the
conditions it creates a different dataset object:
- PinaTensorDataset for torch.Tensor
- PinaGraphDataset for list of torch_geometric.data.Data objects
"""
def __new__(cls, conditions_dict, **kwargs):
if len(conditions_dict) == 0:
raise ValueError('No conditions provided')
if all([isinstance(v['input_points'], torch.Tensor) for v
in conditions_dict.values()]):
return PinaTensorDataset(conditions_dict, **kwargs)
elif all([isinstance(v['input_points'], list) for v
in conditions_dict.values()]):
return PinaGraphDataset(conditions_dict, **kwargs)
raise ValueError('Conditions must be either torch.Tensor or list of Data '
'objects.')
class PinaDataset(Dataset):
"""
Abstract class for the PINA dataset
"""
def __init__(self, conditions_dict, max_conditions_lengths):
self.conditions_dict = conditions_dict
self.max_conditions_lengths = max_conditions_lengths
self.conditions_length = {k: len(v['input_points']) for k, v in
self.conditions_dict.items()}
self.length = max(self.conditions_length.values())
def _get_max_len(self):
max_len = 0
for condition in self.conditions_dict.values():
max_len = max(max_len, len(condition['input_points']))
return max_len
def __len__(self):
return self.length
@abstractmethod
def __getitem__(self, item):
pass
class PinaTensorDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
super().__init__(conditions_dict, max_conditions_lengths)
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_dummy
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
}
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {k: v[cond_idx]
for k, v in data.items()}
return to_return_dict
@staticmethod
def _getitem_dummy(idx):
return idx
def get_all_data(self):
index = [i for i in range(len(self))]
return self.fetch_from_idx_list(index)
def __getitem__(self, idx):
return self._getitem_func(idx)
@property
def input_points(self):
"""
Method to return input points for training.
"""
return {
k: v['input_points'] for k, v in self.conditions_dict.items()
}
class PinaBatch(Batch):
"""
Add extract function to torch_geometric Batch object
"""
def __init__(self):
super().__init__(self)
def extract(self, labels):
"""
Perform extraction of labels on node features (x)
:param labels: Labels to extract
:type labels: list[str] | tuple[str] | str
:return: Batch object with extraction performed on x
:rtype: PinaBatch
"""
self.x = self.x.extract(labels)
return self
class PinaGraphDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
super().__init__(conditions_dict, max_conditions_lengths)
self.in_labels = {}
self.out_labels = None
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_dummy
ex_data = conditions_dict[list(conditions_dict.keys())[
0]]['input_points'][0]
for name, attr in ex_data.items():
if isinstance(attr, LabelTensor):
self.in_labels[name] = attr.stored_labels
ex_data = conditions_dict[list(conditions_dict.keys())[
0]]['output_points'][0]
if isinstance(ex_data, LabelTensor):
self.out_labels = ex_data.labels
self._create_graph_batch_from_list = self._labelise_batch(
self._base_create_graph_batch_from_list) if self.in_labels \
else self._base_create_graph_batch_from_list
self._create_output_batch = self._labelise_tensor(
self._base_create_output_batch) if self.out_labels is not None \
else self._base_create_output_batch
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {
k: self._create_graph_batch_from_list([v[i] for i in idx])
if isinstance(v, list)
else self._create_output_batch(v[idx])
for k, v in data.items()
}
return to_return_dict
def _base_create_graph_batch_from_list(self, data):
batch = PinaBatch.from_data_list(data)
return batch
def _base_create_output_batch(self, data):
out = data.reshape(-1, *data.shape[2:])
return out
def _getitem_dummy(self, idx):
return idx
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
}
def get_all_data(self):
index = [i for i in range(len(self))]
return self.fetch_from_idx_list(index)
def __getitem__(self, idx):
return self._getitem_func(idx)
def _labelise_batch(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
batch = func(*args, **kwargs)
for k, v in self.in_labels.items():
tmp = batch[k]
tmp.labels = v
batch[k] = tmp
return batch
return wrapper
def _labelise_tensor(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
out = func(*args, **kwargs)
if isinstance(out, LabelTensor):
out.labels = self.out_labels
return out
return wrapper
def create_graph_batch(self, data):
"""
# TODO
"""
if isinstance(data[0], Data):
return self._create_graph_batch_from_list(data)
return self._create_output_batch(data)