220 lines
7.9 KiB
Python
220 lines
7.9 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from ...utils import check_consistency
|
|
|
|
from . import (
|
|
SpectralConvBlock1D,
|
|
SpectralConvBlock2D,
|
|
SpectralConvBlock3D,
|
|
)
|
|
|
|
|
|
class FourierBlock1D(nn.Module):
|
|
"""
|
|
Fourier block implementation for three dimensional
|
|
input tensor. The combination of Fourier blocks
|
|
make up the Fourier Neural Operator
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B.,
|
|
Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). *Fourier neural operator for
|
|
parametric partial differential equations*.
|
|
DOI: `arXiv preprint arXiv:2010.08895.
|
|
<https://arxiv.org/abs/2010.08895>`_
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_numb_fields,
|
|
output_numb_fields,
|
|
n_modes,
|
|
activation=torch.nn.Tanh,
|
|
):
|
|
super().__init__()
|
|
"""
|
|
PINA implementation of Fourier block one dimension. The module computes
|
|
the spectral convolution of the input with a linear kernel in the
|
|
fourier space, and then it maps the input back to the physical
|
|
space. The output is then added to a Linear tranformation of the
|
|
input in the physical space. Finally an activation function is
|
|
applied to the output.
|
|
|
|
The block expects an input of size ``[batch, input_numb_fields, N]``
|
|
and returns an output of size ``[batch, output_numb_fields, N]``.
|
|
|
|
:param int input_numb_fields: The number of channels for the input.
|
|
:param int output_numb_fields: The number of channels for the output.
|
|
:param list | tuple n_modes: Number of modes to select for each dimension.
|
|
It must be at most equal to the ``floor(N/2)+1``.
|
|
:param torch.nn.Module activation: The activation function.
|
|
"""
|
|
# check type consistency
|
|
check_consistency(activation(), nn.Module)
|
|
|
|
# assign variables
|
|
self._spectral_conv = SpectralConvBlock1D(
|
|
input_numb_fields=input_numb_fields,
|
|
output_numb_fields=output_numb_fields,
|
|
n_modes=n_modes,
|
|
)
|
|
self._activation = activation()
|
|
self._linear = nn.Conv1d(input_numb_fields, output_numb_fields, 1)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward computation for Fourier Block. It performs a spectral
|
|
convolution and a linear transformation of the input and sum the
|
|
results.
|
|
|
|
:param x: The input tensor for fourier block, expect of size
|
|
``[batch, input_numb_fields, x]``.
|
|
:type x: torch.Tensor
|
|
:return: The output tensor obtained from the
|
|
fourier block of size ``[batch, output_numb_fields, x]``.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
return self._activation(self._spectral_conv(x) + self._linear(x))
|
|
|
|
|
|
class FourierBlock2D(nn.Module):
|
|
"""
|
|
Fourier block implementation for two dimensional
|
|
input tensor. The combination of Fourier blocks
|
|
make up the Fourier Neural Operator
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Li, Zongyi, et al.
|
|
*Fourier neural operator for parametric partial
|
|
differential equations*. arXiv preprint
|
|
arXiv:2010.08895 (2020)
|
|
<https://arxiv.org/abs/2010.08895.pdf>`_.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_numb_fields,
|
|
output_numb_fields,
|
|
n_modes,
|
|
activation=torch.nn.Tanh,
|
|
):
|
|
"""
|
|
PINA implementation of Fourier block two dimensions. The module computes
|
|
the spectral convolution of the input with a linear kernel in the
|
|
fourier space, and then it maps the input back to the physical
|
|
space. The output is then added to a Linear tranformation of the
|
|
input in the physical space. Finally an activation function is
|
|
applied to the output.
|
|
|
|
The block expects an input of size ``[batch, input_numb_fields, Nx, Ny]``
|
|
and returns an output of size ``[batch, output_numb_fields, Nx, Ny]``.
|
|
|
|
:param int input_numb_fields: The number of channels for the input.
|
|
:param int output_numb_fields: The number of channels for the output.
|
|
:param list | tuple n_modes: Number of modes to select for each dimension.
|
|
It must be at most equal to the ``floor(Nx/2)+1`` and ``floor(Ny/2)+1``.
|
|
:param torch.nn.Module activation: The activation function.
|
|
"""
|
|
super().__init__()
|
|
|
|
# check type consistency
|
|
check_consistency(activation(), nn.Module)
|
|
|
|
# assign variables
|
|
self._spectral_conv = SpectralConvBlock2D(
|
|
input_numb_fields=input_numb_fields,
|
|
output_numb_fields=output_numb_fields,
|
|
n_modes=n_modes,
|
|
)
|
|
self._activation = activation()
|
|
self._linear = nn.Conv2d(input_numb_fields, output_numb_fields, 1)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward computation for Fourier Block. It performs a spectral
|
|
convolution and a linear transformation of the input and sum the
|
|
results.
|
|
|
|
:param x: The input tensor for fourier block, expect of size
|
|
``[batch, input_numb_fields, x, y]``.
|
|
:type x: torch.Tensor
|
|
:return: The output tensor obtained from the
|
|
fourier block of size ``[batch, output_numb_fields, x, y, z]``.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
return self._activation(self._spectral_conv(x) + self._linear(x))
|
|
|
|
|
|
class FourierBlock3D(nn.Module):
|
|
"""
|
|
Fourier block implementation for three dimensional
|
|
input tensor. The combination of Fourier blocks
|
|
make up the Fourier Neural Operator
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Li, Zongyi, et al.
|
|
*Fourier neural operator for parametric partial
|
|
differential equations*. arXiv preprint
|
|
arXiv:2010.08895 (2020)
|
|
<https://arxiv.org/abs/2010.08895.pdf>`_.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_numb_fields,
|
|
output_numb_fields,
|
|
n_modes,
|
|
activation=torch.nn.Tanh,
|
|
):
|
|
"""
|
|
PINA implementation of Fourier block three dimensions. The module computes
|
|
the spectral convolution of the input with a linear kernel in the
|
|
fourier space, and then it maps the input back to the physical
|
|
space. The output is then added to a Linear tranformation of the
|
|
input in the physical space. Finally an activation function is
|
|
applied to the output.
|
|
|
|
The block expects an input of size ``[batch, input_numb_fields, Nx, Ny, Nz]``
|
|
and returns an output of size ``[batch, output_numb_fields, Nx, Ny, Nz]``.
|
|
|
|
:param int input_numb_fields: The number of channels for the input.
|
|
:param int output_numb_fields: The number of channels for the output.
|
|
:param list | tuple n_modes: Number of modes to select for each dimension.
|
|
It must be at most equal to the ``floor(Nx/2)+1``, ``floor(Ny/2)+1``
|
|
and ``floor(Nz/2)+1``.
|
|
:param torch.nn.Module activation: The activation function.
|
|
"""
|
|
super().__init__()
|
|
|
|
# check type consistency
|
|
check_consistency(activation(), nn.Module)
|
|
|
|
# assign variables
|
|
self._spectral_conv = SpectralConvBlock3D(
|
|
input_numb_fields=input_numb_fields,
|
|
output_numb_fields=output_numb_fields,
|
|
n_modes=n_modes,
|
|
)
|
|
self._activation = activation()
|
|
self._linear = nn.Conv3d(input_numb_fields, output_numb_fields, 1)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward computation for Fourier Block. It performs a spectral
|
|
convolution and a linear transformation of the input and sum the
|
|
results.
|
|
|
|
:param x: The input tensor for fourier block, expect of size
|
|
``[batch, input_numb_fields, x, y, z]``.
|
|
:type x: torch.Tensor
|
|
:return: The output tensor obtained from the
|
|
fourier block of size ``[batch, output_numb_fields, x, y, z]``.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
return self._activation(self._spectral_conv(x) + self._linear(x))
|