Files
PINA/tests/test_equations/test_equation.py
Dario Coscia df673cad4e Renaming
* solvers -> solver
* adaptive_functions -> adaptive_function
* callbacks -> callback
* operators -> operator
* pinns -> physics_informed_solver
* layers -> block
2025-03-19 17:46:36 +01:00

49 lines
1.2 KiB
Python

from pina.equation import Equation
from pina.operator import grad, laplacian
from pina import LabelTensor
import torch
import pytest
def eq1(input_, output_):
u_grad = grad(output_, input_)
u1_xx = grad(u_grad, input_, components=['du1dx'], d=['x'])
u2_xy = grad(u_grad, input_, components=['du2dx'], d=['y'])
return torch.hstack([u1_xx, u2_xy])
def eq2(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u1']), input_)
return delta_u - force_term
def foo():
pass
def test_constructor():
Equation(eq1)
Equation(eq2)
with pytest.raises(ValueError):
Equation([1, 2, 4])
with pytest.raises(ValueError):
Equation(foo())
def test_residual():
eq_1 = Equation(eq1)
eq_2 = Equation(eq2)
pts = LabelTensor(torch.rand(10, 2), labels=['x', 'y'])
pts.requires_grad = True
u = torch.pow(pts, 2)
u.labels = ['u1', 'u2']
eq_1_res = eq_1.residual(pts, u)
eq_2_res = eq_2.residual(pts, u)
assert eq_1_res.shape == torch.Size([10, 2])
assert eq_2_res.shape == torch.Size([10, 1])