not bad this setup

This commit is contained in:
2025-12-18 09:30:21 +01:00
parent 4fdf817d75
commit 0a034225ef
4 changed files with 120 additions and 58 deletions

View File

@@ -17,7 +17,7 @@ def import_class(class_path: str):
def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
# print(pos_.shape, y_.shape, y_pred_.shape, y_true_.shape)
for j in [0, 5, 10, 20]:
for j in [0]:
idx = (batch == j).nonzero(as_tuple=True)[0]
y = y_[idx].detach().cpu()
y_pred = y_pred_[idx].detach().cpu()
@@ -25,11 +25,11 @@ def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
# print(pos.shape, y.shape, y_pred.shape)
y_true = y_true_[idx].detach().cpu()
y_true = torch.clamp(y_true, min=0)
folder = f"{j:02d}_images"
folder = f"{batch_idx:02d}_images"
if os.path.exists(folder) is False:
os.makedirs(folder)
tria = Triangulation(pos[:, 0], pos[:, 1])
plt.figure(figsize=(18, 6))
plt.figure(figsize=(24, 6))
# plt.subplot(1, 4, 1)
# plt.tricontourf(tria, y.squeeze().numpy(), levels=100)
# plt.colorbar()
@@ -37,59 +37,94 @@ def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
# plt.tripcolor(tria, y_pred.squeeze().numpy()
# plt.savefig("test_scatter_step_before.png", dpi=72)
# x = z
plt.subplot(1, 3, 1)
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100)
# plt.scatter(
# pos[:, 0],
# pos[:, 1],
# c=y_pred.squeeze().numpy(),
# s=20,
# cmap="viridis",
# )
plt.subplot(1, 4, 1)
# plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100)
plt.scatter(
pos[:, 0],
pos[:, 1],
c=y_pred.squeeze().numpy(),
s=20,
cmap="viridis",
)
plt.colorbar()
plt.title("Step t Predicted")
plt.subplot(1, 3, 2)
plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100)
# plt.scatter(
# pos[:, 0],
# pos[:, 1],
# c=y_true.squeeze().numpy(),
# s=20,
# cmap="viridis",
# )
plt.title(f"Prediction at timestep {i:03d}")
plt.subplot(1, 4, 2)
# plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100)
plt.scatter(
pos[:, 0],
pos[:, 1],
c=y_true.squeeze().numpy(),
s=20,
cmap="viridis",
)
plt.colorbar()
plt.title("t True")
plt.subplot(1, 3, 3)
per_element_relative_error = torch.abs(y_pred - y_true)
plt.tricontourf(tria, per_element_relative_error.squeeze(), levels=100)
# plt.scatter(
# pos[:, 0],
# pos[:, 1],
# c=per_element_relative_error.squeeze().numpy(),
# s=20,
# cmap="viridis",
# )
plt.title("Ground Truth Steady State")
plt.subplot(1, 4, 3)
per_element_relative_error = torch.abs(y_pred - y_true) / (y_true + 1e-6)
# plt.tricontourf(tria, per_element_relative_error.squeeze(), levels=100)
plt.scatter(
pos[:, 0],
pos[:, 1],
c=per_element_relative_error.squeeze().numpy(),
s=20,
cmap="viridis",
vmin=0,
vmax=1.0,
)
plt.colorbar()
plt.title("Relative Error")
plt.subplot(1, 4, 4)
absolute_error = torch.abs(y_pred - y_true)
# plt.tricontourf(tria, absolute_error.squeeze(), levels=100)
plt.scatter(
pos[:, 0],
pos[:, 1],
c=absolute_error.squeeze().numpy(),
s=20,
cmap="viridis",
)
plt.colorbar()
plt.title("Absolute Error")
plt.suptitle("GNO", fontsize=16)
name = f"{folder}/{j:04d}_graph_iter_{i:04d}.png"
plt.savefig(name, dpi=72)
plt.close()
def _plot_losses(test_losses, batch_idx):
folder = f"{batch_idx:02d}_images"
plt.figure()
def _plot_losses(relative_errors, test_losses, relative_update, batch_idx):
# folder = f"{batch_idx:02d}_images"
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 1)
for i, losses in enumerate(test_losses):
plt.plot(losses)
if i == 3:
break
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Relative Error")
plt.ylabel("Test Loss")
plt.title("Test Loss over Iterations")
plt.grid(True)
file_name = f"{folder}/test_loss.png"
plt.subplot(1, 3, 2)
for i, losses in enumerate(relative_errors):
plt.plot(losses)
if i == 3:
break
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Relative Error")
plt.title("Relative error over Iterations")
plt.grid(True)
plt.subplot(1, 3, 3)
for i, updates in enumerate(relative_update):
plt.plot(updates)
if i == 3:
break
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Relative Update")
plt.title("Relative update over Iterations")
plt.grid(True)
file_name = f"test_errors.png"
plt.savefig(file_name, dpi=300)
plt.close()
@@ -110,6 +145,8 @@ class GraphSolver(LightningModule):
self.loss = loss if loss is not None else torch.nn.MSELoss()
self.unrolling_steps = unrolling_steps
self.test_losses = []
self.test_relative_errors = []
self.test_relative_updates = []
def _compute_loss(self, x, y):
return self.loss(x, y)
@@ -164,6 +201,7 @@ class GraphSolver(LightningModule):
)
losses = []
for i in range(self.unrolling_steps):
# print(f"Training step {i+1}/{self.unrolling_steps}")
out = self._compute_model_steps(
x,
edge_index,
@@ -235,11 +273,11 @@ class GraphSolver(LightningModule):
self._log_loss(loss, batch, "val")
return loss
def _check_convergence(self, y_new, y_old, tol=1e-3):
l2_norm = torch.norm(y_new, p=2) - torch.norm(y_old, p=2)
def _check_convergence(self, y_new, y_old, tol=1e-4):
l2_norm = torch.norm(y_new - y_old, p=2)
y_old_norm = torch.norm(y_old, p=2)
rel_error = l2_norm / (y_old_norm)
return rel_error.item() < tol
return rel_error.item() < tol, rel_error.item()
def test_step(self, batch: Batch, batch_idx):
x, y, edge_index, edge_attr, conductivity = self._preprocess_batch(
@@ -249,8 +287,19 @@ class GraphSolver(LightningModule):
losses = []
all_losses = []
norms = []
s = []
relative_updates = []
sequence_length = y.size(1)
y = y[:, -1, :].unsqueeze(1)
_plot_mesh(
batch.pos,
x,
x,
y[:, -1, :],
batch.batch,
0,
batch_idx
)
for i in range(100):
out = self._compute_model_steps(
# torch.cat([x,pos], dim=-1),
@@ -263,23 +312,24 @@ class GraphSolver(LightningModule):
conductivity,
)
norms.append(torch.norm(out - x, p=2).item())
converged = self._check_convergence(out, x)
if batch_idx == 0:
converged, relative_update = self._check_convergence(out, x)
relative_updates.append(relative_update)
if batch_idx <= 4:
print(f"Plotting iteration {i}, norm diff: {norms[-1]}")
_plot_mesh(
batch.pos,
x,
out,
y[:, -1, :],
batch.batch,
i,
self.current_epoch,
i+1,
batch_idx
)
x = out
loss = self.loss(out, y[:, -1, :])
relative_error = torch.norm(out - y[:, -1, :], p=2) / torch.norm(
y[:, -1, :], p=2
)
all_losses.append(relative_error.item())
relative_error = torch.abs(out - y[:, -1, :]) / (torch.abs(y[:, -1, :]) + 1e-6)
mean_relative_error = relative_error.mean()
all_losses.append(mean_relative_error.item())
losses.append(loss)
if converged:
print(
@@ -287,13 +337,15 @@ class GraphSolver(LightningModule):
)
break
loss = torch.stack(losses).mean()
self.test_losses.append(all_losses)
self.test_losses.append(losses)
self.test_relative_errors.append(all_losses)
self.test_relative_updates.append(relative_updates)
self._log_loss(loss, batch, "test")
return loss
def on_test_end(self):
if len(self.test_losses) > 0:
_plot_losses(self.test_losses, batch_idx=0)
_plot_losses(self.test_relative_errors, self.test_losses, self.test_relative_updates, batch_idx=0)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)