improve efficiency data module

This commit is contained in:
Filippo Olivo
2025-10-06 13:23:32 +02:00
parent 469b1c6e13
commit 1498bfd55d
3 changed files with 84 additions and 61 deletions

View File

@@ -23,8 +23,9 @@ class GraphDataModule(LightningDataModule):
super().__init__()
self.hf_repo = hf_repo
self.split_name = split_name
self.dataset = None
self.geometry = None
self.dataset_dict = {}
# self.geometry = None
self.geometry_dict = {}
self.train_size = train_size
self.val_size = val_size
self.test_size = test_size
@@ -32,20 +33,30 @@ class GraphDataModule(LightningDataModule):
self.remove_boundary_edges = remove_boundary_edges
def prepare_data(self):
hf_dataset = load_dataset(self.hf_repo, name="snapshots")[
self.split_name
]
self.geometry = load_dataset(self.hf_repo, name="geometry")[
self.split_name
]
self.data = [
self._build_dataset(snapshot, geometry)
for snapshot, geometry in tqdm(
zip(hf_dataset, self.geometry),
desc="Building graphs",
total=len(hf_dataset),
)
]
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
# data = [
# self._build_dataset(snapshot, geometry)
# for snapshot, geometry in tqdm(
# zip(hf_dataset, self.geometry),
# desc="Building graphs",
# total=len(hf_dataset),
# )
# ]
total_len = len(dataset)
train_len = int(self.train_size * total_len)
valid_len = int(self.val_size * total_len)
self.dataset_dict = {
"train": dataset.select(range(0, train_len)),
"val": dataset.select(range(train_len, train_len + valid_len)),
"test": dataset.select(range(train_len + valid_len, total_len)),
}
self.geometry_dict = {
"train": geometry.select(range(0, train_len)),
"val": geometry.select(range(train_len, train_len + valid_len)),
"test": geometry.select(range(train_len + valid_len, total_len)),
}
def _compute_boundary_mask(
self, bottom_ids, right_ids, top_ids, left_ids, temperature
@@ -132,15 +143,36 @@ class GraphDataModule(LightningDataModule):
)
def setup(self, stage: str = None):
n = len(self.data)
train_end = int(n * self.train_size)
val_end = train_end + int(n * self.val_size)
print(type(self.dataset_dict["train"]))
if stage == "fit" or stage is None:
self.train_data = self.data[:train_end]
self.val_data = self.data[train_end:val_end]
self.train_data = [
self._build_dataset(snap, geom)
for snap, geom in tqdm(
zip(
self.dataset_dict["train"], self.geometry_dict["train"]
),
desc="Building train graphs",
total=len(self.dataset_dict["train"]),
)
]
self.val_data = [
self._build_dataset(snap, geom)
for snap, geom in tqdm(
zip(self.dataset_dict["val"], self.geometry_dict["val"]),
desc="Building val graphs",
total=len(self.dataset_dict["val"]),
)
]
if stage == "test" or stage is None:
self.test_data = self.data[val_end:]
self.test_data = [
self._build_dataset(snap, geom)
for snap, geom in tqdm(
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
desc="Building test graphs",
total=len(self.dataset_dict["test"]),
)
]
def train_dataloader(self):
return DataLoader(