add model and solver that maybe works
This commit is contained in:
@@ -69,7 +69,7 @@ class GraphSolver(LightningModule):
|
|||||||
self.automatic_optimization = False
|
self.automatic_optimization = False
|
||||||
self.threshold = 1e-5
|
self.threshold = 1e-5
|
||||||
|
|
||||||
self.aplha = 0.1
|
self.alpha = torch.nn.Parameter(torch.tensor(0.1))
|
||||||
|
|
||||||
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
||||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||||
@@ -100,15 +100,15 @@ class GraphSolver(LightningModule):
|
|||||||
def _compute_model_steps(
|
def _compute_model_steps(
|
||||||
self, x, edge_index, edge_attr, deg, boundary_mask, boundary_values
|
self, x, edge_index, edge_attr, deg, boundary_mask, boundary_values
|
||||||
):
|
):
|
||||||
with torch.no_grad():
|
# with torch.no_grad():
|
||||||
out = self.fd_net(x, edge_index, edge_attr, deg)
|
# out = self.fd_net(x, edge_index, edge_attr, deg)
|
||||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
|
||||||
# diff = out - x
|
|
||||||
correction = self.model(x, edge_index, edge_attr, deg)
|
|
||||||
out = out + self.aplha * correction
|
|
||||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
|
||||||
# out = self.model(x, edge_index, edge_attr, deg)
|
|
||||||
# out[boundary_mask] = boundary_values.unsqueeze(-1)
|
# out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||||
|
# diff = out - x
|
||||||
|
# out = self.model(out, edge_index, edge_attr, deg)
|
||||||
|
# out = out + self.alpha * correction
|
||||||
|
# out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||||
|
out = self.model(x, edge_index, edge_attr, deg)
|
||||||
|
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def _check_convergence(self, out, x):
|
def _check_convergence(self, out, x):
|
||||||
|
|||||||
@@ -23,7 +23,6 @@ class FiniteDifferenceStep(MessagePassing):
|
|||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
# return self.message_net(x_j * edge_attr)
|
|
||||||
return x_j * edge_attr
|
return x_j * edge_attr
|
||||||
|
|
||||||
def update(self, aggr_out, _):
|
def update(self, aggr_out, _):
|
||||||
|
|||||||
@@ -1,53 +1,124 @@
|
|||||||
|
# import torch
|
||||||
|
# import torch.nn as nn
|
||||||
|
# from torch_geometric.nn import MessagePassing
|
||||||
|
# from torch.nn.utils import spectral_norm
|
||||||
|
|
||||||
|
# class GCNConvLayer(MessagePassing):
|
||||||
|
# def __init__(self, in_channels, out_channels):
|
||||||
|
# super().__init__(aggr="add")
|
||||||
|
# self.lin_l = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
|
||||||
|
# self.lin_r = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
|
||||||
|
|
||||||
|
# def forward(self, x, edge_index, edge_attr, deg):
|
||||||
|
# out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
|
||||||
|
# out = self.lin_l(out)
|
||||||
|
# return out
|
||||||
|
|
||||||
|
# def message(self, x_j, edge_attr):
|
||||||
|
# return x_j * edge_attr
|
||||||
|
|
||||||
|
# def aggregate(self, inputs, index, deg):
|
||||||
|
# """
|
||||||
|
# TODO: add docstring.
|
||||||
|
# """
|
||||||
|
# out = super().aggregate(inputs, index)
|
||||||
|
# deg = deg + 1e-7
|
||||||
|
# return out / deg.view(-1, 1)
|
||||||
|
|
||||||
|
|
||||||
|
# class CorrectionNet(nn.Module):
|
||||||
|
# def __init__(self, hidden_dim=8, n_layers=1):
|
||||||
|
# super().__init__()
|
||||||
|
# # self.enc = GCNConvLayer(1, hidden_dim)
|
||||||
|
# self.enc = nn.Sequential(
|
||||||
|
# spectral_norm(nn.Linear(1, hidden_dim//2)),
|
||||||
|
# nn.GELU(),
|
||||||
|
# spectral_norm(nn.Linear(hidden_dim//2, hidden_dim)),
|
||||||
|
# )
|
||||||
|
# self.layers = torch.nn.ModuleList([GCNConvLayer(hidden_dim, hidden_dim) for _ in range(n_layers)])
|
||||||
|
# self.relu = nn.GELU()
|
||||||
|
|
||||||
|
# self.dec = nn.Sequential(
|
||||||
|
# spectral_norm(nn.Linear(hidden_dim, hidden_dim//2)),
|
||||||
|
# nn.GELU(),
|
||||||
|
# spectral_norm(nn.Linear(hidden_dim//2, 1)),
|
||||||
|
# )
|
||||||
|
|
||||||
|
# def forward(self, x, edge_index, edge_attr, deg,):
|
||||||
|
# # h = self.enc(x, edge_index, edge_attr, deg)
|
||||||
|
# # h = self.relu(self.enc(x))
|
||||||
|
# h = self.enc(x)
|
||||||
|
# for layer in self.layers:
|
||||||
|
# h = layer(h, edge_index, edge_attr, deg)
|
||||||
|
# # h = self.norm(h)
|
||||||
|
# h = self.relu(h)
|
||||||
|
# # out = self.dec(h, edge_index, edge_attr, deg)
|
||||||
|
# out = self.dec(h)
|
||||||
|
# return out
|
||||||
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch_geometric.nn import MessagePassing
|
from torch_geometric.nn import MessagePassing
|
||||||
|
from torch.nn.utils import spectral_norm
|
||||||
# from torch.nn.utils import spectral_norm
|
|
||||||
|
|
||||||
|
|
||||||
class GCNConvLayer(MessagePassing):
|
class CorrectionNet(MessagePassing):
|
||||||
def __init__(self, in_channels, out_channels):
|
"""
|
||||||
super().__init__("add")
|
TODO: add docstring.
|
||||||
self.lin = nn.Sequential(
|
"""
|
||||||
nn.Linear(in_channels, out_channels),
|
|
||||||
nn.ReLU(),
|
def __init__(self, hidden_dim=16):
|
||||||
nn.Linear(out_channels, out_channels),
|
super().__init__(aggr="add")
|
||||||
nn.ReLU(),
|
self.in_net = nn.Sequential(
|
||||||
|
spectral_norm(nn.Linear(1, hidden_dim // 2)),
|
||||||
|
nn.GELU(),
|
||||||
|
spectral_norm(nn.Linear(hidden_dim // 2, hidden_dim)),
|
||||||
)
|
)
|
||||||
|
|
||||||
def _compute_edge_weight(self, edge_index, edge_w, deg):
|
self.out_net = nn.Sequential(
|
||||||
""" """
|
spectral_norm(nn.Linear(hidden_dim, hidden_dim // 2)),
|
||||||
return edge_w.squeeze() / (
|
nn.GELU(),
|
||||||
1 + torch.sqrt(deg[edge_index[0]] * deg[edge_index[1]])
|
spectral_norm(nn.Linear(hidden_dim // 2, 1)),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.lin_msg = spectral_norm(
|
||||||
|
nn.Linear(hidden_dim, hidden_dim, bias=False)
|
||||||
|
)
|
||||||
|
self.lin_update = spectral_norm(
|
||||||
|
nn.Linear(hidden_dim, hidden_dim, bias=False)
|
||||||
|
)
|
||||||
|
self.alpha = nn.Parameter(torch.tensor(0.0))
|
||||||
|
self.beta = nn.Parameter(torch.tensor(0.0))
|
||||||
|
|
||||||
def forward(self, x, edge_index, edge_attr, deg):
|
def forward(self, x, edge_index, edge_attr, deg):
|
||||||
edge_w = self._compute_edge_weight(edge_index, edge_attr, deg)
|
"""
|
||||||
return self.propagate(edge_index, x=x, edge_weight=edge_w, deg=deg)
|
TODO: add docstring.
|
||||||
|
"""
|
||||||
|
x = self.in_net(x)
|
||||||
|
out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
|
||||||
|
return self.out_net(out)
|
||||||
|
|
||||||
def message(self, x_j, edge_weight):
|
def message(self, x_j, edge_attr):
|
||||||
return edge_weight.view(-1, 1) * x_j
|
"""
|
||||||
|
TODO: add docstring.
|
||||||
|
"""
|
||||||
|
alpha = torch.sigmoid(self.alpha)
|
||||||
|
msg = x_j * edge_attr
|
||||||
|
msg = (1 - alpha) * msg + alpha * self.lin_msg(msg)
|
||||||
|
return msg
|
||||||
|
|
||||||
|
def update(self, aggr_out, x):
|
||||||
|
"""
|
||||||
|
TODO: add docstring.
|
||||||
|
"""
|
||||||
|
beta = torch.sigmoid(self.beta)
|
||||||
|
return aggr_out * (1 - beta) + self.lin_msg(x) * beta
|
||||||
|
|
||||||
class CorrectionNet(nn.Module):
|
def aggregate(self, inputs, index, deg):
|
||||||
def __init__(self, hidden_dim=8):
|
"""
|
||||||
super().__init__()
|
TODO: add docstring.
|
||||||
self.enc = nn.Sequential(
|
"""
|
||||||
nn.Linear(1, hidden_dim // 2),
|
out = super().aggregate(inputs, index)
|
||||||
nn.ReLU(),
|
deg = deg + 1e-7
|
||||||
nn.Linear(hidden_dim // 2, hidden_dim),
|
return out / deg.view(-1, 1)
|
||||||
nn.ReLU(),
|
|
||||||
)
|
|
||||||
self.model = GCNConvLayer(hidden_dim, hidden_dim)
|
|
||||||
self.dec = nn.Sequential(
|
|
||||||
nn.Linear(hidden_dim, hidden_dim // 2),
|
|
||||||
nn.ReLU(),
|
|
||||||
nn.Linear(hidden_dim // 2, 1),
|
|
||||||
nn.ReLU(),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x, edge_index, edge_attr, deg):
|
|
||||||
h = self.enc(x)
|
|
||||||
h = self.model(h, edge_index, edge_attr, deg)
|
|
||||||
out = self.dec(h)
|
|
||||||
return out
|
|
||||||
|
|||||||
Reference in New Issue
Block a user