add learnable finite difference and fix __init__.py

This commit is contained in:
Filippo Olivo
2025-10-27 10:54:35 +01:00
parent 6e90ef5393
commit 35770ace67
3 changed files with 162 additions and 16 deletions

View File

@@ -15,21 +15,21 @@ class FiniteDifferenceStep(MessagePassing):
aggr == "add"
), "Per somme pesate, l'aggregazione deve essere 'add'."
self.root_weight = float(root_weight)
self.p = torch.nn.Parameter(torch.tensor(0.5))
def forward(self, x, edge_index, edge_attr, deg, weight=1.0):
def forward(self, x, edge_index, edge_attr, deg):
"""
TODO: add docstring.
"""
out = self.propagate(
edge_index, x=x, edge_attr=edge_attr, deg=deg, weight=weight
)
out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
return out
def message(self, x_j, edge_attr):
"""
TODO: add docstring.
"""
return edge_attr.view(-1, 1) * x_j
p = torch.clamp(self.p, 0.0, 1.0)
return p * edge_attr.view(-1, 1) * x_j
def aggregate(self, inputs, index, deg):
"""
@@ -39,12 +39,11 @@ class FiniteDifferenceStep(MessagePassing):
deg = deg + 1e-7
return out / deg.view(-1, 1)
def update(self, aggr_out, x, weight):
def update(self, aggr_out, x):
"""
TODO: add docstring.
"""
print(weight)
return weight * aggr_out + (1 - weight) * x
return self.root_weight * aggr_out + (1 - self.root_weight) * x
class GraphFiniteDifference(nn.Module):
@@ -94,13 +93,27 @@ class GraphFiniteDifference(nn.Module):
c_ij = self._compute_c_ij(c, edge_index)
edge_attr = edge_attr * c_ij
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
conv_thres = self.threshold * torch.norm(x)
weight = 1.0
# Calcola la soglia staccando x dal grafo
conv_thres = self.threshold * torch.norm(x.detach())
for _i in range(self.max_iters):
out = self.fd_step(x, edge_index, edge_attr, deg, weight=weight)
weight = weight * 0.9999
out = self.fd_step(x, edge_index, edge_attr, deg)
out[boundary_mask] = boundary_values.unsqueeze(-1)
if torch.norm(out - x) < conv_thres:
# Controllo convergenza senza tracciamento gradienti
with torch.no_grad():
residual_norm = torch.norm(out - x)
if residual_norm < conv_thres:
break
x = out
# --- OTTIMIZZAZIONE CHIAVE ---
# Stacca 'out' dal grafo prima della prossima iterazione
# per evitare BPTT e risparmiare memoria.
x = out.detach()
# Il 'out' finale restituito mantiene i gradienti
# dell'ULTIMA chiamata a fd_step, permettendo al modello
# di apprendere correttamente.
return out, _i + 1