small fix

This commit is contained in:
Filippo Olivo
2025-10-05 10:36:23 +02:00
parent 7a6fbdb89c
commit 469b1c6e13
3 changed files with 142 additions and 40 deletions

View File

@@ -6,6 +6,7 @@ from torch_geometric.data import Data
from torch_geometric.loader import DataLoader from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_undirected from torch_geometric.utils import to_undirected
from .mesh_data import MeshData from .mesh_data import MeshData
import os
class GraphDataModule(LightningDataModule): class GraphDataModule(LightningDataModule):
@@ -115,8 +116,8 @@ class GraphDataModule(LightningDataModule):
pos=pos, pos=pos,
edge_attr=edge_attr, edge_attr=edge_attr,
y=temperature.unsqueeze(-1), y=temperature.unsqueeze(-1),
boundary_mask=boundary_mask, boundary_mask=torch.tensor(0), # Fake value (to fix)
boundary_values=torch.tensor(0), boundary_values=torch.tensor(0), # Fake value (to fix)
) )
return MeshData( return MeshData(
@@ -143,15 +144,27 @@ class GraphDataModule(LightningDataModule):
def train_dataloader(self): def train_dataloader(self):
return DataLoader( return DataLoader(
self.train_data, batch_size=self.batch_size, shuffle=True self.train_data,
batch_size=self.batch_size,
shuffle=True,
num_workers=8,
pin_memory=True,
) )
def val_dataloader(self): def val_dataloader(self):
return DataLoader( return DataLoader(
self.val_data, batch_size=self.batch_size, shuffle=False self.val_data,
batch_size=self.batch_size,
shuffle=False,
num_workers=8,
pin_memory=True,
) )
def test_dataloader(self): def test_dataloader(self):
return DataLoader( return DataLoader(
self.test_data, batch_size=self.batch_size, shuffle=False self.test_data,
batch_size=self.batch_size,
shuffle=False,
num_workers=8,
pin_memory=True,
) )

View File

@@ -56,44 +56,100 @@ class DecX(nn.Module):
return self.net(x) return self.net(x)
# class ConditionalGNOBlock(MessagePassing):
# def __init__(self, hidden_ch, edge_ch=0, aggr="mean"):
# super().__init__(aggr=aggr, node_dim=0)
# self.edge_attr_net = nn.Sequential(
# nn.Linear(edge_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Softplus()
# )
# self.diff_net = nn.Sequential(
# nn.Linear(hidden_ch, hidden_ch),
# nn.SiLU(),
# nn.Linear(hidden_ch, hidden_ch),
# )
# # self.x_net = nn.Sequential(
# # nn.Linear(hidden_ch, hidden_ch),
# # nn.SiLU(),
# # nn.Linear(hidden_ch, hidden_ch),
# # )
# self.c_ij_net = nn.Sequential(
# nn.Linear(hidden_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Sigmoid(),
# )
# # self.gamma_net = nn.Sequential(
# # nn.Linear(2 * hidden_ch, hidden_ch),
# # nn.SiLU(),
# # nn.Linear(hidden_ch, hidden_ch // 2),
# # nn.SiLU(),
# # nn.Linear(hidden_ch // 2, 1),
# # nn.Sigmoid(),
# # )
# self.alpha_net = nn.Sequential(
# nn.Linear(2 * hidden_ch, hidden_ch),
# nn.SiLU(),
# nn.Linear(hidden_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Sigmoid(),
# )
# def forward(self, x, c, edge_index, edge_attr=None):
# return self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr)
# def message(self, x_i, x_j, c_i, c_j, edge_attr):
# c_ij = 0.5 * (c_i + c_j)
# # gamma = self.gamma_net(torch.cat([x_i, x_j], dim=-1))
# # gate = torch.sself.edge_attr_net(edge_attr))
# gate = self.edge_attr_net(edge_attr)
# # m = (
# # gamma * self.diff_net(x_j - x_i) + (1 - gamma) * self.x_net(x_j)
# # ) * gate
# m = self.diff_net(x_j - x_i) * gate
# m = m * self.c_ij_net(c_ij)
# return m
# def update(self, aggr_out, x):
# alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1))
# return x + alpha * aggr_out
class ConditionalGNOBlock(MessagePassing): class ConditionalGNOBlock(MessagePassing):
def __init__(self, hidden_ch, edge_ch=0, aggr="mean"): def __init__(self, hidden_ch, edge_ch=0, aggr="mean"):
super().__init__(aggr=aggr, node_dim=0) super().__init__(aggr=aggr, node_dim=0)
self.edge_ch = edge_ch
# Rete che mappa edge_attr -> coefficiente scalare (log-scale)
# Se edge_ch==0 useremo un coefficiente apprendibile globale
self.edge_attr_net = nn.Sequential( self.edge_attr_net = nn.Sequential(
nn.Linear(edge_ch, hidden_ch // 2), nn.Linear(edge_ch, hidden_ch),
nn.SiLU(), nn.SiLU(),
nn.Linear(hidden_ch // 2, hidden_ch), nn.Linear(hidden_ch, hidden_ch // 2),
nn.Tanh(),
)
self.msg_proj = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch, bias=False),
nn.SiLU(), nn.SiLU(),
nn.Linear(hidden_ch, hidden_ch, bias=False), nn.Linear(hidden_ch // 2, 1),
nn.Softplus(),
) )
# gating dalla condizione c_ij (restituisce scalar in (0,1))
self.diff_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch),
nn.SiLU(),
nn.Linear(hidden_ch, hidden_ch),
)
self.x_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch),
nn.SiLU(),
nn.Linear(hidden_ch, hidden_ch),
)
self.c_ij_net = nn.Sequential( self.c_ij_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch), nn.Linear(hidden_ch, hidden_ch),
nn.SiLU(), nn.SiLU(),
nn.Linear(hidden_ch, hidden_ch), nn.Linear(hidden_ch, hidden_ch // 2),
nn.Tanh(), nn.SiLU(),
nn.Linear(hidden_ch // 2, 1),
nn.Sigmoid(),
) )
self.balancing = nn.Parameter(torch.tensor(0.0)) # alpha per passo (clampato tramite sigmoid)
self.alpha_net = nn.Sequential( self.alpha_net = nn.Sequential(
nn.Linear(2 * hidden_ch, hidden_ch), nn.Linear(2 * hidden_ch, hidden_ch),
nn.SiLU(), nn.SiLU(),
@@ -103,22 +159,56 @@ class ConditionalGNOBlock(MessagePassing):
nn.Sigmoid(), nn.Sigmoid(),
) )
# self.norm = nn.LayerNorm(hidden_ch)
def forward(self, x, c, edge_index, edge_attr=None): def forward(self, x, c, edge_index, edge_attr=None):
# chiamiamo propagate; edge_attr può essere None
return self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr) return self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr)
def message(self, x_i, x_j, c_i, c_j, edge_attr): def message(self, x_i, x_j, c_i, c_j, edge_attr):
c_ij = 0.5 * (c_i + c_j) """
alpha = torch.sigmoid(self.balancing) Implementazione diffusiva:
gate = torch.sigmoid(self.edge_attr_net(edge_attr)) m_ij = w_ij * (x_j - x_i) * c_gate_ij
m = ( dove w_ij = softplus(edge_attr_net(edge_attr)) >= 0
alpha * self.diff_net(x_j - x_i) + (1 - alpha) * self.x_net(x_j) """
) * gate # 1) calcola c_ij e gating da c
m = m * self.c_ij_net(c_ij) c_ij = 0.5 * (c_i + c_j) # [E, H]
c_gate = self.c_ij_net(c_ij) # [E, 1] in (0,1)
# 2) calcola peso scalare non-negativo per edge
w_raw = self.edge_attr_net(edge_attr) # [E,1]
# softplus -> peso >= 0; aggiungo epsilon per stabilità
w = w_raw + 1e-12 # [E,1]
# 3) messaggio base: differenza pesata
diff = x_j - x_i # [E, H]
m = w * diff # broadcast: [E,1] * [E,H] -> [E,H]
# 4) applica gating dalla condizione
m = m * c_gate # [E,H]
# Restituisco anche w (sfruttabile in update) — ma MessagePassing non ritorna extra,
# così se vuoi degree-normalization devi calcolare i gradi prima di propagate.
# Qui ritorno solo m: la normalizzazione per grado la faccio in update usando 'mean' aggr
return m return m
def update(self, aggr_out, x): def update(self, aggr_out, x):
alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1)) """
return x + alpha * self.msg_proj(aggr_out) aggr_out:
- se aggr='sum': somma delle w_ij*(x_j-x_i) incoming
- se aggr='mean': già normalizzato sul numero di vicini (ma non per somma dei pesi)
Qui normalizziamo implicitamente dividendo per (1 + |aggr_out|_norm) per stabilità,
e applichiamo il passo alpha.
"""
# aggr_out = self.norm(aggr_out) # stabilizza la scala
# alpha vettoriale/scalar: [N,1]
alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1)) # in (0,1)
x_new = x + alpha * aggr_out
return x_new
class GatingGNO(nn.Module): class GatingGNO(nn.Module):

View File

@@ -109,7 +109,6 @@ class GraphSolver(LightningModule):
edge_index=edge_index, edge_index=edge_index,
edge_attr=edge_attr, edge_attr=edge_attr,
unrolling_steps=self.unrolling_steps, unrolling_steps=self.unrolling_steps,
plot_results=True,
batch=batch.batch, batch=batch.batch,
pos=batch.pos, pos=batch.pos,
) )