random changes
This commit is contained in:
@@ -6,7 +6,6 @@ from torch_geometric.data import Data
|
|||||||
from torch_geometric.loader import DataLoader
|
from torch_geometric.loader import DataLoader
|
||||||
from torch_geometric.utils import to_undirected
|
from torch_geometric.utils import to_undirected
|
||||||
from .mesh_data import MeshData
|
from .mesh_data import MeshData
|
||||||
import os
|
|
||||||
|
|
||||||
|
|
||||||
class GraphDataModule(LightningDataModule):
|
class GraphDataModule(LightningDataModule):
|
||||||
@@ -18,7 +17,7 @@ class GraphDataModule(LightningDataModule):
|
|||||||
val_size: float = 0.1,
|
val_size: float = 0.1,
|
||||||
test_size: float = 0.1,
|
test_size: float = 0.1,
|
||||||
batch_size: int = 32,
|
batch_size: int = 32,
|
||||||
remove_boundary_edges: bool = True,
|
remove_boundary_edges: bool = False,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.hf_repo = hf_repo
|
self.hf_repo = hf_repo
|
||||||
@@ -82,6 +81,7 @@ class GraphDataModule(LightningDataModule):
|
|||||||
temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32)
|
temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32)
|
||||||
|
|
||||||
edge_index = torch.tensor(geometry["edge_index"], dtype=torch.int64).T
|
edge_index = torch.tensor(geometry["edge_index"], dtype=torch.int64).T
|
||||||
|
|
||||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||||
bottom_ids = torch.tensor(
|
bottom_ids = torch.tensor(
|
||||||
geometry["bottom_boundary_ids"], dtype=torch.long
|
geometry["bottom_boundary_ids"], dtype=torch.long
|
||||||
@@ -97,7 +97,6 @@ class GraphDataModule(LightningDataModule):
|
|||||||
boundary_mask, boundary_values = self._compute_boundary_mask(
|
boundary_mask, boundary_values = self._compute_boundary_mask(
|
||||||
bottom_ids, right_ids, top_ids, left_ids, temperature
|
bottom_ids, right_ids, top_ids, left_ids, temperature
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.remove_boundary_edges:
|
if self.remove_boundary_edges:
|
||||||
boundary_idx = torch.unique(boundary_mask)
|
boundary_idx = torch.unique(boundary_mask)
|
||||||
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
||||||
@@ -119,7 +118,7 @@ class GraphDataModule(LightningDataModule):
|
|||||||
edge_attr=edge_attr,
|
edge_attr=edge_attr,
|
||||||
y=temperature.unsqueeze(-1),
|
y=temperature.unsqueeze(-1),
|
||||||
boundary_mask=boundary_mask,
|
boundary_mask=boundary_mask,
|
||||||
boundary_values=torch.tensor(0), # Fake value (to fix)
|
boundary_values=boundary_values,
|
||||||
)
|
)
|
||||||
|
|
||||||
return MeshData(
|
return MeshData(
|
||||||
@@ -129,7 +128,7 @@ class GraphDataModule(LightningDataModule):
|
|||||||
pos=pos,
|
pos=pos,
|
||||||
edge_attr=edge_attr,
|
edge_attr=edge_attr,
|
||||||
boundary_mask=boundary_mask,
|
boundary_mask=boundary_mask,
|
||||||
boundary_values=boundary_values.unsqueeze(-1),
|
boundary_values=boundary_values,
|
||||||
y=temperature.unsqueeze(-1),
|
y=temperature.unsqueeze(-1),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@@ -2,6 +2,8 @@ import torch
|
|||||||
from lightning import LightningModule
|
from lightning import LightningModule
|
||||||
from torch_geometric.data import Batch
|
from torch_geometric.data import Batch
|
||||||
import importlib
|
import importlib
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
from matplotlib.tri import Triangulation
|
||||||
|
|
||||||
|
|
||||||
def import_class(class_path: str):
|
def import_class(class_path: str):
|
||||||
@@ -11,6 +13,32 @@ def import_class(class_path: str):
|
|||||||
return cls
|
return cls
|
||||||
|
|
||||||
|
|
||||||
|
def _plot_mesh(pos, y, y_pred, batch):
|
||||||
|
|
||||||
|
idx = batch == 0
|
||||||
|
y = y[idx].detach().cpu()
|
||||||
|
y_pred = y_pred[idx].detach().cpu()
|
||||||
|
pos = pos[idx].detach().cpu()
|
||||||
|
|
||||||
|
pos = pos.detach().cpu()
|
||||||
|
tria = Triangulation(pos[:, 0], pos[:, 1])
|
||||||
|
plt.figure(figsize=(18, 5))
|
||||||
|
plt.subplot(1, 3, 1)
|
||||||
|
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
|
||||||
|
plt.colorbar()
|
||||||
|
plt.title("True temperature")
|
||||||
|
plt.subplot(1, 3, 2)
|
||||||
|
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
|
||||||
|
plt.colorbar()
|
||||||
|
plt.title("Predicted temperature")
|
||||||
|
plt.subplot(1, 3, 3)
|
||||||
|
plt.tricontourf(tria, torch.abs(y_pred - y).squeeze().numpy(), levels=14)
|
||||||
|
plt.colorbar()
|
||||||
|
plt.title("Error")
|
||||||
|
plt.suptitle("GNO", fontsize=16)
|
||||||
|
plt.savefig("gno.png", dpi=300)
|
||||||
|
|
||||||
|
|
||||||
class GraphSolver(LightningModule):
|
class GraphSolver(LightningModule):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@@ -32,14 +60,16 @@ class GraphSolver(LightningModule):
|
|||||||
edge_attr: torch.Tensor,
|
edge_attr: torch.Tensor,
|
||||||
unrolling_steps: int = None,
|
unrolling_steps: int = None,
|
||||||
boundary_mask: torch.Tensor = None,
|
boundary_mask: torch.Tensor = None,
|
||||||
|
boundary_values: torch.Tensor = None,
|
||||||
):
|
):
|
||||||
return self.model(
|
return self.model(
|
||||||
x,
|
x=x,
|
||||||
c,
|
c=c,
|
||||||
edge_index,
|
edge_index=edge_index,
|
||||||
edge_attr,
|
edge_attr=edge_attr,
|
||||||
unrolling_steps,
|
unrolling_steps=unrolling_steps,
|
||||||
boundary_mask=boundary_mask,
|
boundary_mask=boundary_mask,
|
||||||
|
boundary_values=boundary_values,
|
||||||
)
|
)
|
||||||
|
|
||||||
def _compute_loss(self, x, y):
|
def _compute_loss(self, x, y):
|
||||||
@@ -61,52 +91,82 @@ class GraphSolver(LightningModule):
|
|||||||
|
|
||||||
def training_step(self, batch: Batch, _):
|
def training_step(self, batch: Batch, _):
|
||||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||||
y_pred = self(
|
y_pred, it = self(
|
||||||
x,
|
x,
|
||||||
c,
|
c,
|
||||||
edge_index=edge_index,
|
edge_index=edge_index,
|
||||||
edge_attr=edge_attr,
|
edge_attr=edge_attr,
|
||||||
unrolling_steps=self.unrolling_steps,
|
unrolling_steps=self.unrolling_steps,
|
||||||
boundary_mask=batch.boundary_mask,
|
boundary_mask=batch.boundary_mask,
|
||||||
|
boundary_values=batch.boundary_values,
|
||||||
)
|
)
|
||||||
loss = self.loss(y_pred, y)
|
loss = self.loss(y_pred, y)
|
||||||
boundary_loss = self.loss(
|
boundary_loss = self.loss(
|
||||||
y_pred[batch.boundary_mask], y[batch.boundary_mask]
|
y_pred[batch.boundary_mask], y[batch.boundary_mask]
|
||||||
)
|
)
|
||||||
self._log_loss(loss, batch, "train")
|
self._log_loss(loss, batch, "train")
|
||||||
self._log_loss(boundary_loss, batch, "train_boundary")
|
# self._log_loss(boundary_loss, batch, "train_boundary")
|
||||||
|
self.log(
|
||||||
|
"train/iterations",
|
||||||
|
it,
|
||||||
|
on_step=False,
|
||||||
|
on_epoch=True,
|
||||||
|
prog_bar=True,
|
||||||
|
batch_size=int(batch.num_graphs),
|
||||||
|
)
|
||||||
|
self.log(
|
||||||
|
"train/param_p",
|
||||||
|
self.model.fd_step.p,
|
||||||
|
on_step=False,
|
||||||
|
on_epoch=True,
|
||||||
|
prog_bar=True,
|
||||||
|
batch_size=int(batch.num_graphs),
|
||||||
|
)
|
||||||
|
# self.log("train/param_a", self.model.fd_step.a, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs))
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def validation_step(self, batch: Batch, _):
|
def validation_step(self, batch: Batch, _):
|
||||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||||
y_pred = self(
|
y_pred, it = self(
|
||||||
x,
|
x,
|
||||||
c,
|
c,
|
||||||
edge_index=edge_index,
|
edge_index=edge_index,
|
||||||
edge_attr=edge_attr,
|
edge_attr=edge_attr,
|
||||||
unrolling_steps=self.unrolling_steps,
|
unrolling_steps=self.unrolling_steps,
|
||||||
|
boundary_mask=batch.boundary_mask,
|
||||||
|
boundary_values=batch.boundary_values,
|
||||||
)
|
)
|
||||||
loss = self.loss(y_pred, y)
|
loss = self.loss(y_pred, y)
|
||||||
boundary_loss = self.loss(
|
boundary_loss = self.loss(
|
||||||
y_pred[batch.boundary_mask], y[batch.boundary_mask]
|
y_pred[batch.boundary_mask], y[batch.boundary_mask]
|
||||||
)
|
)
|
||||||
self._log_loss(loss, batch, "val")
|
self._log_loss(loss, batch, "val")
|
||||||
self._log_loss(boundary_loss, batch, "val_boundary")
|
self.log(
|
||||||
|
"val/iterations",
|
||||||
|
it,
|
||||||
|
on_step=False,
|
||||||
|
on_epoch=True,
|
||||||
|
prog_bar=True,
|
||||||
|
batch_size=int(batch.num_graphs),
|
||||||
|
)
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def test_step(self, batch: Batch, _):
|
def test_step(self, batch: Batch, _):
|
||||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||||
y_pred = self.model(
|
y_pred, _ = self.model(
|
||||||
x,
|
x=x,
|
||||||
c,
|
c=c,
|
||||||
edge_index=edge_index,
|
edge_index=edge_index,
|
||||||
edge_attr=edge_attr,
|
edge_attr=edge_attr,
|
||||||
unrolling_steps=self.unrolling_steps,
|
unrolling_steps=self.unrolling_steps,
|
||||||
batch=batch.batch,
|
batch=batch.batch,
|
||||||
pos=batch.pos,
|
pos=batch.pos,
|
||||||
plot_results=True,
|
boundary_mask=batch.boundary_mask,
|
||||||
|
boundary_values=batch.boundary_values,
|
||||||
|
plot_results=False,
|
||||||
)
|
)
|
||||||
loss = self._compute_loss(y_pred, y)
|
loss = self._compute_loss(y_pred, y)
|
||||||
|
_plot_mesh(batch.pos, y, y_pred, batch.batch)
|
||||||
self._log_loss(loss, batch, "test")
|
self._log_loss(loss, batch, "test")
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
__all__ = ["GraphFiniteDifference", "GatingGNO"]
|
__all__ = ["GraphFiniteDifference", "GatingGNO"]
|
||||||
|
|
||||||
from .finite_difference import GraphFiniteDifference
|
from .learnable_finite_difference import GraphFiniteDifference
|
||||||
from .local_gno import GatingGNO
|
from .local_gno import GatingGNO
|
||||||
from .point_net import PointNet
|
from .point_net import PointNet
|
||||||
|
|||||||
@@ -1,25 +0,0 @@
|
|||||||
from pina.model import GraphNeuralOperator
|
|
||||||
import torch
|
|
||||||
from torch_geometric.data import Data
|
|
||||||
|
|
||||||
|
|
||||||
class GNO(torch.nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self, x_ch_node, f_ch_node, hidden, layers, edge_ch=0, out_ch=1
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
lifting_operator = torch.nn.Linear(x_ch_node + f_ch_node, hidden)
|
|
||||||
self.gno = GraphNeuralOperator(
|
|
||||||
lifting_operator=lifting_operator,
|
|
||||||
projection_operator=torch.nn.Linear(hidden, out_ch),
|
|
||||||
edge_features=edge_ch,
|
|
||||||
n_layers=layers,
|
|
||||||
internal_n_layers=2,
|
|
||||||
shared_weights=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x, c, edge_index, edge_attr):
|
|
||||||
x = torch.cat([x, c], dim=-1)
|
|
||||||
x = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
|
|
||||||
return self.gno(x)
|
|
||||||
@@ -9,32 +9,27 @@ class FiniteDifferenceStep(MessagePassing):
|
|||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, aggr: str = "add", root_weight: float = 1.0):
|
||||||
self,
|
|
||||||
aggr: str = "add",
|
|
||||||
normalize: bool = True,
|
|
||||||
root_weight: float = 1.0,
|
|
||||||
):
|
|
||||||
super().__init__(aggr=aggr)
|
super().__init__(aggr=aggr)
|
||||||
|
|
||||||
self.normalize = normalize
|
|
||||||
assert (
|
assert (
|
||||||
aggr == "add"
|
aggr == "add"
|
||||||
), "Per somme pesate, l'aggregazione deve essere 'add'."
|
), "Per somme pesate, l'aggregazione deve essere 'add'."
|
||||||
self.root_weight = float(root_weight)
|
self.root_weight = float(root_weight)
|
||||||
|
|
||||||
def forward(self, x, edge_index, edge_weight, deg):
|
def forward(self, x, edge_index, edge_attr, deg, weight=1.0):
|
||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
out = self.propagate(edge_index, x=x, edge_weight=edge_weight, deg=deg)
|
out = self.propagate(
|
||||||
|
edge_index, x=x, edge_attr=edge_attr, deg=deg, weight=weight
|
||||||
|
)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def message(self, x_j, edge_weight):
|
def message(self, x_j, edge_attr):
|
||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
return edge_weight.view(-1, 1) * x_j
|
return edge_attr.view(-1, 1) * x_j
|
||||||
|
|
||||||
def aggregate(self, inputs, index, deg):
|
def aggregate(self, inputs, index, deg):
|
||||||
"""
|
"""
|
||||||
@@ -44,11 +39,12 @@ class FiniteDifferenceStep(MessagePassing):
|
|||||||
deg = deg + 1e-7
|
deg = deg + 1e-7
|
||||||
return out / deg.view(-1, 1)
|
return out / deg.view(-1, 1)
|
||||||
|
|
||||||
def update(self, aggr_out, x):
|
def update(self, aggr_out, x, weight):
|
||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
return self.root_weight * aggr_out + (1 - self.root_weight) * x
|
print(weight)
|
||||||
|
return weight * aggr_out + (1 - weight) * x
|
||||||
|
|
||||||
|
|
||||||
class GraphFiniteDifference(nn.Module):
|
class GraphFiniteDifference(nn.Module):
|
||||||
@@ -56,24 +52,22 @@ class GraphFiniteDifference(nn.Module):
|
|||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, max_iters: int = 1000, threshold: float = 1e-4):
|
def __init__(self, max_iters: int = 5000, threshold: float = 1e-4):
|
||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.max_iters = max_iters
|
self.max_iters = max_iters
|
||||||
self.threshold = threshold
|
self.threshold = threshold
|
||||||
self.fd_step = FiniteDifferenceStep(
|
self.fd_step = FiniteDifferenceStep(aggr="add", root_weight=1.0)
|
||||||
aggr="add", normalize=True, root_weight=1.0
|
|
||||||
)
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _compute_deg(edge_index, edge_weight, num_nodes):
|
def _compute_deg(edge_index, edge_attr, num_nodes):
|
||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||||
deg = deg.scatter_add(0, edge_index[1], edge_weight)
|
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
||||||
return deg + 1e-7
|
return deg + 1e-7
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@@ -84,19 +78,29 @@ class GraphFiniteDifference(nn.Module):
|
|||||||
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
|
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, x, edge_index, edge_weight, c, boundary_mask, boundary_values
|
self,
|
||||||
|
x,
|
||||||
|
edge_index,
|
||||||
|
edge_attr,
|
||||||
|
c,
|
||||||
|
boundary_mask,
|
||||||
|
boundary_values,
|
||||||
|
**kwargs,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
|
edge_attr = 1 / edge_attr[:, -1]
|
||||||
c_ij = self._compute_c_ij(c, edge_index)
|
c_ij = self._compute_c_ij(c, edge_index)
|
||||||
edge_weight = edge_weight * c_ij
|
edge_attr = edge_attr * c_ij
|
||||||
deg = self._compute_deg(edge_index, edge_weight, x.size(0))
|
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||||
conv_thres = self.threshold * torch.norm(x)
|
conv_thres = self.threshold * torch.norm(x)
|
||||||
for _i in tqdm(range(self.max_iters)):
|
weight = 1.0
|
||||||
out = self.fd_step(x, edge_index, edge_weight, deg)
|
for _i in range(self.max_iters):
|
||||||
|
out = self.fd_step(x, edge_index, edge_attr, deg, weight=weight)
|
||||||
|
weight = weight * 0.9999
|
||||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||||
if torch.norm(out - x) < conv_thres:
|
if torch.norm(out - x) < conv_thres:
|
||||||
break
|
break
|
||||||
x = out
|
x = out
|
||||||
return out
|
return out, _i + 1
|
||||||
|
|||||||
@@ -108,14 +108,14 @@ class MLP(torch.nn.Module):
|
|||||||
tmp_layers.append(self._output_dim)
|
tmp_layers.append(self._output_dim)
|
||||||
|
|
||||||
self._layers = []
|
self._layers = []
|
||||||
self._LayerNorm = []
|
self._batchnorm = []
|
||||||
for i in range(len(tmp_layers) - 1):
|
for i in range(len(tmp_layers) - 1):
|
||||||
|
|
||||||
self._layers.append(
|
self._layers.append(
|
||||||
self.spect_norm(nn.Linear(tmp_layers[i], tmp_layers[i + 1]))
|
self.spect_norm(nn.Linear(tmp_layers[i], tmp_layers[i + 1]))
|
||||||
)
|
)
|
||||||
|
|
||||||
self._LayerNorm.append(nn.LazyLayerNorm())
|
self._batchnorm.append(nn.LazyBatchNorm1d())
|
||||||
|
|
||||||
if isinstance(func, list):
|
if isinstance(func, list):
|
||||||
self._functions = func
|
self._functions = func
|
||||||
@@ -124,7 +124,7 @@ class MLP(torch.nn.Module):
|
|||||||
|
|
||||||
unique_list = []
|
unique_list = []
|
||||||
for layer, func, bnorm in zip(
|
for layer, func, bnorm in zip(
|
||||||
self._layers[:-1], self._functions, self._LayerNorm
|
self._layers[:-1], self._functions, self._batchnorm
|
||||||
):
|
):
|
||||||
|
|
||||||
unique_list.append(layer)
|
unique_list.append(layer)
|
||||||
@@ -208,7 +208,7 @@ class TNet(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
self._function = function()
|
self._function = function()
|
||||||
self._bn1 = nn.LazyLayerNorm()
|
self._bn1 = nn.LazyBatchNorm1d()
|
||||||
|
|
||||||
def forward(self, X):
|
def forward(self, X):
|
||||||
"""Forward pass for T-Net
|
"""Forward pass for T-Net
|
||||||
@@ -299,9 +299,9 @@ class PointNet(nn.Module):
|
|||||||
self._tnet_feature = TNet(input_dim=64)
|
self._tnet_feature = TNet(input_dim=64)
|
||||||
|
|
||||||
self._function = function()
|
self._function = function()
|
||||||
self._bn1 = nn.LazyLayerNorm()
|
self._bn1 = nn.LazyBatchNorm1d()
|
||||||
self._bn2 = nn.LazyLayerNorm()
|
self._bn2 = nn.LazyBatchNorm1d()
|
||||||
self._bn3 = nn.LazyLayerNorm()
|
self._bn3 = nn.LazyBatchNorm1d()
|
||||||
|
|
||||||
def concat(self, embedding, input_):
|
def concat(self, embedding, input_):
|
||||||
"""Returns concatenation of global and local features for Point-Net
|
"""Returns concatenation of global and local features for Point-Net
|
||||||
@@ -370,3 +370,205 @@ class PointNet(nn.Module):
|
|||||||
X = self._mlp4(X)
|
X = self._mlp4(X)
|
||||||
|
|
||||||
return X
|
return X
|
||||||
|
|
||||||
|
|
||||||
|
class ConvTNet(nn.Module):
|
||||||
|
"""T-Net base class. Implementation of T-Network with convolutional layers.
|
||||||
|
|
||||||
|
Reference: Ali Kashefi et al. https://arxiv.org/abs/2208.13434
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, input_dim):
|
||||||
|
"""T-Net block constructor
|
||||||
|
|
||||||
|
:param input_dim: input dimension of point cloud
|
||||||
|
:type input_dim: int
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
function = nn.Tanh
|
||||||
|
self._function = function()
|
||||||
|
|
||||||
|
self._block1 = nn.Sequential(
|
||||||
|
nn.Conv1d(input_dim, 64, 1),
|
||||||
|
nn.BatchNorm1d(64),
|
||||||
|
self._function,
|
||||||
|
nn.Conv1d(64, 128, 1),
|
||||||
|
nn.BatchNorm1d(128),
|
||||||
|
self._function,
|
||||||
|
nn.Conv1d(128, 1024, 1),
|
||||||
|
nn.BatchNorm1d(1024),
|
||||||
|
self._function,
|
||||||
|
)
|
||||||
|
|
||||||
|
self._block2 = MLP(
|
||||||
|
input_dim=1024,
|
||||||
|
output_dim=input_dim * input_dim,
|
||||||
|
layers=[512, 256],
|
||||||
|
func=function,
|
||||||
|
batch_norm=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, X):
|
||||||
|
"""Forward pass for T-Net
|
||||||
|
|
||||||
|
:param X: input tensor, shape [batch, $input_{dim}$, N]
|
||||||
|
with batch the batch size, N number of points and $input_{dim}$
|
||||||
|
the input dimension of the point cloud.
|
||||||
|
:type X: torch.tensor
|
||||||
|
:return: output affine matrix transformation, shape
|
||||||
|
[batch, $input_{dim} \times input_{dim}$] with batch
|
||||||
|
the batch size and $input_{dim}$ the input dimension
|
||||||
|
of the point cloud.
|
||||||
|
:rtype: torch.tensor
|
||||||
|
"""
|
||||||
|
|
||||||
|
batch, input_dim = X.shape[0], X.shape[1]
|
||||||
|
|
||||||
|
# encoding using first MLP
|
||||||
|
X = self._block1(X)
|
||||||
|
|
||||||
|
# applying symmetric function to aggregate information (using max as default)
|
||||||
|
X, _ = torch.max(X, dim=-1)
|
||||||
|
|
||||||
|
# decoding using third MLP
|
||||||
|
X = self._block2(X)
|
||||||
|
|
||||||
|
return X.reshape(batch, input_dim, input_dim)
|
||||||
|
|
||||||
|
|
||||||
|
class ConvPointNet(nn.Module):
|
||||||
|
"""Point-Net base class. Implementation of Point Network for segmentation.
|
||||||
|
|
||||||
|
Reference: Ali Kashefi et al. https://arxiv.org/abs/2208.13434
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, input_dim, output_dim, tnet=False):
|
||||||
|
"""Point-Net block constructor
|
||||||
|
|
||||||
|
:param input_dim: input dimension of point cloud
|
||||||
|
:type input_dim: int
|
||||||
|
:param output_dim: output dimension of point cloud
|
||||||
|
:type output_dim: int
|
||||||
|
:param tnet: apply T-Net transformation, defaults to False
|
||||||
|
:type tnet: bool, optional
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self._function = nn.Tanh()
|
||||||
|
self._use_tnet = tnet
|
||||||
|
|
||||||
|
self._block1 = nn.Sequential(
|
||||||
|
nn.Conv1d(input_dim, 64, 1),
|
||||||
|
nn.BatchNorm1d(),
|
||||||
|
self._function,
|
||||||
|
nn.Conv1d(64, 64, 1),
|
||||||
|
nn.BatchNorm1d(64),
|
||||||
|
self._function,
|
||||||
|
)
|
||||||
|
|
||||||
|
self._block2 = nn.Sequential(
|
||||||
|
nn.Conv1d(64, 64, 1),
|
||||||
|
nn.BatchNorm1d(64),
|
||||||
|
self._function,
|
||||||
|
nn.Conv1d(64, 128, 1),
|
||||||
|
nn.BatchNorm1d(128),
|
||||||
|
self._function,
|
||||||
|
nn.Conv1d(128, 1024, 1),
|
||||||
|
nn.BatchNorm1d(1024),
|
||||||
|
self._function,
|
||||||
|
)
|
||||||
|
|
||||||
|
self._block3 = nn.Sequential(
|
||||||
|
nn.Conv1d(1088, 512, 1),
|
||||||
|
nn.BatchNorm1d(512),
|
||||||
|
self._function,
|
||||||
|
nn.Conv1d(512, 256, 1),
|
||||||
|
nn.BatchNorm1d(256),
|
||||||
|
self._function,
|
||||||
|
nn.Conv1d(256, 128, 1),
|
||||||
|
nn.BatchNorm1d(128),
|
||||||
|
self._function,
|
||||||
|
)
|
||||||
|
|
||||||
|
self._block4 = nn.Conv1d(128, output_dim, 1)
|
||||||
|
|
||||||
|
if self._use_tnet:
|
||||||
|
self._tnet_transform = ConvTNet(input_dim=input_dim)
|
||||||
|
self._tnet_feature = ConvTNet(input_dim=64)
|
||||||
|
|
||||||
|
def concat(self, embedding, input_):
|
||||||
|
"""
|
||||||
|
Returns concatenation of global and local features for Point-Net
|
||||||
|
|
||||||
|
:param embedding: global features of Point-Net, shape [batch, $input_{dim}$]
|
||||||
|
with batch the batch size and $input_{dim}$ the input dimension
|
||||||
|
of the point cloud.
|
||||||
|
:type embedding: torch.tensor
|
||||||
|
:param input_: local features of Point-Net, shape [batch, N, $input_{dim}$]
|
||||||
|
with batch the batch size, N number of points and $input_{dim}$
|
||||||
|
the input dimension of the point cloud.
|
||||||
|
:type input_: torch.tensor
|
||||||
|
:return: concatenation vector, shape [batch, N, $input_{dim}$]
|
||||||
|
with batch the batch size, N number of points and $input_{dim}$
|
||||||
|
:rtype: torch.tensor
|
||||||
|
"""
|
||||||
|
n_points = input_.shape[-1]
|
||||||
|
embedding = embedding.unsqueeze(2).repeat(1, 1, n_points)
|
||||||
|
return torch.cat([embedding, input_], dim=1)
|
||||||
|
|
||||||
|
def forward(self, X):
|
||||||
|
"""Forward pass for Point-Net
|
||||||
|
|
||||||
|
:param X: input tensor, shape [batch, N, $input_{dim}$]
|
||||||
|
with batch the batch size, N number of points and $input_{dim}$
|
||||||
|
the input dimension of the point cloud.
|
||||||
|
:type X: torch.tensor
|
||||||
|
:return: segmentation vector, shape [batch, N, $output_{dim}$]
|
||||||
|
with batch the batch size, N number of points and $output_{dim}$
|
||||||
|
the output dimension of the point cloud.
|
||||||
|
:rtype: torch.tensor
|
||||||
|
"""
|
||||||
|
|
||||||
|
# permuting indeces
|
||||||
|
X = X.permute(0, 2, 1)
|
||||||
|
|
||||||
|
# using transform tnet if needed
|
||||||
|
if self._use_tnet:
|
||||||
|
transform = self._tnet_transform(X)
|
||||||
|
X = X.transpose(2, 1)
|
||||||
|
X = torch.matmul(X, transform)
|
||||||
|
X = X.transpose(2, 1)
|
||||||
|
|
||||||
|
# encoding using first MLP
|
||||||
|
X = self._block1(X)
|
||||||
|
|
||||||
|
# using transform tnet if needed
|
||||||
|
if self._use_tnet:
|
||||||
|
transform = self._tnet_feature(X)
|
||||||
|
X = X.transpose(2, 1)
|
||||||
|
X = torch.matmul(X, transform)
|
||||||
|
X = X.transpose(2, 1)
|
||||||
|
|
||||||
|
# saving latent representation for later concatanation
|
||||||
|
latent = X
|
||||||
|
|
||||||
|
# encoding using second MLP
|
||||||
|
X = self._block2(X)
|
||||||
|
|
||||||
|
# applying symmetric function to aggregate information (using max as default)
|
||||||
|
X, _ = torch.max(X, dim=-1)
|
||||||
|
|
||||||
|
# concatenating with latent vector
|
||||||
|
X = self.concat(X, latent)
|
||||||
|
|
||||||
|
# decoding using third MLP
|
||||||
|
X = self._block3(X)
|
||||||
|
|
||||||
|
# decoding using fourth MLP
|
||||||
|
X = self._block4(X)
|
||||||
|
|
||||||
|
# permuting indeces
|
||||||
|
X = X.permute(0, 2, 1)
|
||||||
|
|
||||||
|
return X
|
||||||
|
|||||||
@@ -15,15 +15,20 @@ def _plot_mesh(x, y, y_pred):
|
|||||||
y_pred = y_pred[x[:, 0] != -1]
|
y_pred = y_pred[x[:, 0] != -1]
|
||||||
|
|
||||||
tria = Triangulation(pos[:, 2], pos[:, 3])
|
tria = Triangulation(pos[:, 2], pos[:, 3])
|
||||||
plt.figure(figsize=(12, 5))
|
plt.figure(figsize=(18, 5))
|
||||||
plt.subplot(1, 2, 1)
|
plt.subplot(1, 3, 1)
|
||||||
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
|
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
|
||||||
plt.colorbar()
|
plt.colorbar()
|
||||||
plt.title("True temperature")
|
plt.title("True temperature")
|
||||||
plt.subplot(1, 2, 2)
|
plt.subplot(1, 3, 2)
|
||||||
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
|
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
|
||||||
plt.colorbar()
|
plt.colorbar()
|
||||||
plt.title("Predicted temperature")
|
plt.title("Predicted temperature")
|
||||||
|
plt.subplot(1, 3, 3)
|
||||||
|
plt.tricontourf(tria, torch.abs(y_pred - y).squeeze().numpy(), levels=14)
|
||||||
|
plt.colorbar()
|
||||||
|
plt.title("Error")
|
||||||
|
plt.suptitle("PointNet", fontsize=16)
|
||||||
plt.savefig("point_net.png", dpi=300)
|
plt.savefig("point_net.png", dpi=300)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user