random changes

This commit is contained in:
Filippo Olivo
2025-10-27 10:23:13 +01:00
parent f49817ca1e
commit 6e90ef5393
7 changed files with 325 additions and 80 deletions

View File

@@ -6,7 +6,6 @@ from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_undirected
from .mesh_data import MeshData
import os
class GraphDataModule(LightningDataModule):
@@ -18,7 +17,7 @@ class GraphDataModule(LightningDataModule):
val_size: float = 0.1,
test_size: float = 0.1,
batch_size: int = 32,
remove_boundary_edges: bool = True,
remove_boundary_edges: bool = False,
):
super().__init__()
self.hf_repo = hf_repo
@@ -82,6 +81,7 @@ class GraphDataModule(LightningDataModule):
temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32)
edge_index = torch.tensor(geometry["edge_index"], dtype=torch.int64).T
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
bottom_ids = torch.tensor(
geometry["bottom_boundary_ids"], dtype=torch.long
@@ -97,7 +97,6 @@ class GraphDataModule(LightningDataModule):
boundary_mask, boundary_values = self._compute_boundary_mask(
bottom_ids, right_ids, top_ids, left_ids, temperature
)
if self.remove_boundary_edges:
boundary_idx = torch.unique(boundary_mask)
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
@@ -119,7 +118,7 @@ class GraphDataModule(LightningDataModule):
edge_attr=edge_attr,
y=temperature.unsqueeze(-1),
boundary_mask=boundary_mask,
boundary_values=torch.tensor(0), # Fake value (to fix)
boundary_values=boundary_values,
)
return MeshData(
@@ -129,7 +128,7 @@ class GraphDataModule(LightningDataModule):
pos=pos,
edge_attr=edge_attr,
boundary_mask=boundary_mask,
boundary_values=boundary_values.unsqueeze(-1),
boundary_values=boundary_values,
y=temperature.unsqueeze(-1),
)

View File

@@ -2,6 +2,8 @@ import torch
from lightning import LightningModule
from torch_geometric.data import Batch
import importlib
from matplotlib import pyplot as plt
from matplotlib.tri import Triangulation
def import_class(class_path: str):
@@ -11,6 +13,32 @@ def import_class(class_path: str):
return cls
def _plot_mesh(pos, y, y_pred, batch):
idx = batch == 0
y = y[idx].detach().cpu()
y_pred = y_pred[idx].detach().cpu()
pos = pos[idx].detach().cpu()
pos = pos.detach().cpu()
tria = Triangulation(pos[:, 0], pos[:, 1])
plt.figure(figsize=(18, 5))
plt.subplot(1, 3, 1)
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("True temperature")
plt.subplot(1, 3, 2)
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("Predicted temperature")
plt.subplot(1, 3, 3)
plt.tricontourf(tria, torch.abs(y_pred - y).squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("Error")
plt.suptitle("GNO", fontsize=16)
plt.savefig("gno.png", dpi=300)
class GraphSolver(LightningModule):
def __init__(
self,
@@ -32,14 +60,16 @@ class GraphSolver(LightningModule):
edge_attr: torch.Tensor,
unrolling_steps: int = None,
boundary_mask: torch.Tensor = None,
boundary_values: torch.Tensor = None,
):
return self.model(
x,
c,
edge_index,
edge_attr,
unrolling_steps,
x=x,
c=c,
edge_index=edge_index,
edge_attr=edge_attr,
unrolling_steps=unrolling_steps,
boundary_mask=boundary_mask,
boundary_values=boundary_values,
)
def _compute_loss(self, x, y):
@@ -61,52 +91,82 @@ class GraphSolver(LightningModule):
def training_step(self, batch: Batch, _):
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
y_pred = self(
y_pred, it = self(
x,
c,
edge_index=edge_index,
edge_attr=edge_attr,
unrolling_steps=self.unrolling_steps,
boundary_mask=batch.boundary_mask,
boundary_values=batch.boundary_values,
)
loss = self.loss(y_pred, y)
boundary_loss = self.loss(
y_pred[batch.boundary_mask], y[batch.boundary_mask]
)
self._log_loss(loss, batch, "train")
self._log_loss(boundary_loss, batch, "train_boundary")
# self._log_loss(boundary_loss, batch, "train_boundary")
self.log(
"train/iterations",
it,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
self.log(
"train/param_p",
self.model.fd_step.p,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
# self.log("train/param_a", self.model.fd_step.a, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs))
return loss
def validation_step(self, batch: Batch, _):
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
y_pred = self(
y_pred, it = self(
x,
c,
edge_index=edge_index,
edge_attr=edge_attr,
unrolling_steps=self.unrolling_steps,
boundary_mask=batch.boundary_mask,
boundary_values=batch.boundary_values,
)
loss = self.loss(y_pred, y)
boundary_loss = self.loss(
y_pred[batch.boundary_mask], y[batch.boundary_mask]
)
self._log_loss(loss, batch, "val")
self._log_loss(boundary_loss, batch, "val_boundary")
self.log(
"val/iterations",
it,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
return loss
def test_step(self, batch: Batch, _):
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
y_pred = self.model(
x,
c,
y_pred, _ = self.model(
x=x,
c=c,
edge_index=edge_index,
edge_attr=edge_attr,
unrolling_steps=self.unrolling_steps,
batch=batch.batch,
pos=batch.pos,
plot_results=True,
boundary_mask=batch.boundary_mask,
boundary_values=batch.boundary_values,
plot_results=False,
)
loss = self._compute_loss(y_pred, y)
_plot_mesh(batch.pos, y, y_pred, batch.batch)
self._log_loss(loss, batch, "test")
return loss

View File

@@ -1,5 +1,5 @@
__all__ = ["GraphFiniteDifference", "GatingGNO"]
from .finite_difference import GraphFiniteDifference
from .learnable_finite_difference import GraphFiniteDifference
from .local_gno import GatingGNO
from .point_net import PointNet

View File

@@ -1,25 +0,0 @@
from pina.model import GraphNeuralOperator
import torch
from torch_geometric.data import Data
class GNO(torch.nn.Module):
def __init__(
self, x_ch_node, f_ch_node, hidden, layers, edge_ch=0, out_ch=1
):
super().__init__()
lifting_operator = torch.nn.Linear(x_ch_node + f_ch_node, hidden)
self.gno = GraphNeuralOperator(
lifting_operator=lifting_operator,
projection_operator=torch.nn.Linear(hidden, out_ch),
edge_features=edge_ch,
n_layers=layers,
internal_n_layers=2,
shared_weights=False,
)
def forward(self, x, c, edge_index, edge_attr):
x = torch.cat([x, c], dim=-1)
x = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
return self.gno(x)

View File

@@ -9,32 +9,27 @@ class FiniteDifferenceStep(MessagePassing):
TODO: add docstring.
"""
def __init__(
self,
aggr: str = "add",
normalize: bool = True,
root_weight: float = 1.0,
):
def __init__(self, aggr: str = "add", root_weight: float = 1.0):
super().__init__(aggr=aggr)
self.normalize = normalize
assert (
aggr == "add"
), "Per somme pesate, l'aggregazione deve essere 'add'."
self.root_weight = float(root_weight)
def forward(self, x, edge_index, edge_weight, deg):
def forward(self, x, edge_index, edge_attr, deg, weight=1.0):
"""
TODO: add docstring.
"""
out = self.propagate(edge_index, x=x, edge_weight=edge_weight, deg=deg)
out = self.propagate(
edge_index, x=x, edge_attr=edge_attr, deg=deg, weight=weight
)
return out
def message(self, x_j, edge_weight):
def message(self, x_j, edge_attr):
"""
TODO: add docstring.
"""
return edge_weight.view(-1, 1) * x_j
return edge_attr.view(-1, 1) * x_j
def aggregate(self, inputs, index, deg):
"""
@@ -44,11 +39,12 @@ class FiniteDifferenceStep(MessagePassing):
deg = deg + 1e-7
return out / deg.view(-1, 1)
def update(self, aggr_out, x):
def update(self, aggr_out, x, weight):
"""
TODO: add docstring.
"""
return self.root_weight * aggr_out + (1 - self.root_weight) * x
print(weight)
return weight * aggr_out + (1 - weight) * x
class GraphFiniteDifference(nn.Module):
@@ -56,24 +52,22 @@ class GraphFiniteDifference(nn.Module):
TODO: add docstring.
"""
def __init__(self, max_iters: int = 1000, threshold: float = 1e-4):
def __init__(self, max_iters: int = 5000, threshold: float = 1e-4):
"""
TODO: add docstring.
"""
super().__init__()
self.max_iters = max_iters
self.threshold = threshold
self.fd_step = FiniteDifferenceStep(
aggr="add", normalize=True, root_weight=1.0
)
self.fd_step = FiniteDifferenceStep(aggr="add", root_weight=1.0)
@staticmethod
def _compute_deg(edge_index, edge_weight, num_nodes):
def _compute_deg(edge_index, edge_attr, num_nodes):
"""
TODO: add docstring.
"""
deg = torch.zeros(num_nodes, device=edge_index.device)
deg = deg.scatter_add(0, edge_index[1], edge_weight)
deg = deg.scatter_add(0, edge_index[1], edge_attr)
return deg + 1e-7
@staticmethod
@@ -84,19 +78,29 @@ class GraphFiniteDifference(nn.Module):
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
def forward(
self, x, edge_index, edge_weight, c, boundary_mask, boundary_values
self,
x,
edge_index,
edge_attr,
c,
boundary_mask,
boundary_values,
**kwargs,
):
"""
TODO: add docstring.
"""
edge_attr = 1 / edge_attr[:, -1]
c_ij = self._compute_c_ij(c, edge_index)
edge_weight = edge_weight * c_ij
deg = self._compute_deg(edge_index, edge_weight, x.size(0))
edge_attr = edge_attr * c_ij
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
conv_thres = self.threshold * torch.norm(x)
for _i in tqdm(range(self.max_iters)):
out = self.fd_step(x, edge_index, edge_weight, deg)
weight = 1.0
for _i in range(self.max_iters):
out = self.fd_step(x, edge_index, edge_attr, deg, weight=weight)
weight = weight * 0.9999
out[boundary_mask] = boundary_values.unsqueeze(-1)
if torch.norm(out - x) < conv_thres:
break
x = out
return out
return out, _i + 1

View File

@@ -108,14 +108,14 @@ class MLP(torch.nn.Module):
tmp_layers.append(self._output_dim)
self._layers = []
self._LayerNorm = []
self._batchnorm = []
for i in range(len(tmp_layers) - 1):
self._layers.append(
self.spect_norm(nn.Linear(tmp_layers[i], tmp_layers[i + 1]))
)
self._LayerNorm.append(nn.LazyLayerNorm())
self._batchnorm.append(nn.LazyBatchNorm1d())
if isinstance(func, list):
self._functions = func
@@ -124,7 +124,7 @@ class MLP(torch.nn.Module):
unique_list = []
for layer, func, bnorm in zip(
self._layers[:-1], self._functions, self._LayerNorm
self._layers[:-1], self._functions, self._batchnorm
):
unique_list.append(layer)
@@ -208,7 +208,7 @@ class TNet(nn.Module):
)
self._function = function()
self._bn1 = nn.LazyLayerNorm()
self._bn1 = nn.LazyBatchNorm1d()
def forward(self, X):
"""Forward pass for T-Net
@@ -299,9 +299,9 @@ class PointNet(nn.Module):
self._tnet_feature = TNet(input_dim=64)
self._function = function()
self._bn1 = nn.LazyLayerNorm()
self._bn2 = nn.LazyLayerNorm()
self._bn3 = nn.LazyLayerNorm()
self._bn1 = nn.LazyBatchNorm1d()
self._bn2 = nn.LazyBatchNorm1d()
self._bn3 = nn.LazyBatchNorm1d()
def concat(self, embedding, input_):
"""Returns concatenation of global and local features for Point-Net
@@ -370,3 +370,205 @@ class PointNet(nn.Module):
X = self._mlp4(X)
return X
class ConvTNet(nn.Module):
"""T-Net base class. Implementation of T-Network with convolutional layers.
Reference: Ali Kashefi et al. https://arxiv.org/abs/2208.13434
"""
def __init__(self, input_dim):
"""T-Net block constructor
:param input_dim: input dimension of point cloud
:type input_dim: int
"""
super().__init__()
function = nn.Tanh
self._function = function()
self._block1 = nn.Sequential(
nn.Conv1d(input_dim, 64, 1),
nn.BatchNorm1d(64),
self._function,
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
self._function,
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024),
self._function,
)
self._block2 = MLP(
input_dim=1024,
output_dim=input_dim * input_dim,
layers=[512, 256],
func=function,
batch_norm=True,
)
def forward(self, X):
"""Forward pass for T-Net
:param X: input tensor, shape [batch, $input_{dim}$, N]
with batch the batch size, N number of points and $input_{dim}$
the input dimension of the point cloud.
:type X: torch.tensor
:return: output affine matrix transformation, shape
[batch, $input_{dim} \times input_{dim}$] with batch
the batch size and $input_{dim}$ the input dimension
of the point cloud.
:rtype: torch.tensor
"""
batch, input_dim = X.shape[0], X.shape[1]
# encoding using first MLP
X = self._block1(X)
# applying symmetric function to aggregate information (using max as default)
X, _ = torch.max(X, dim=-1)
# decoding using third MLP
X = self._block2(X)
return X.reshape(batch, input_dim, input_dim)
class ConvPointNet(nn.Module):
"""Point-Net base class. Implementation of Point Network for segmentation.
Reference: Ali Kashefi et al. https://arxiv.org/abs/2208.13434
"""
def __init__(self, input_dim, output_dim, tnet=False):
"""Point-Net block constructor
:param input_dim: input dimension of point cloud
:type input_dim: int
:param output_dim: output dimension of point cloud
:type output_dim: int
:param tnet: apply T-Net transformation, defaults to False
:type tnet: bool, optional
"""
super().__init__()
self._function = nn.Tanh()
self._use_tnet = tnet
self._block1 = nn.Sequential(
nn.Conv1d(input_dim, 64, 1),
nn.BatchNorm1d(),
self._function,
nn.Conv1d(64, 64, 1),
nn.BatchNorm1d(64),
self._function,
)
self._block2 = nn.Sequential(
nn.Conv1d(64, 64, 1),
nn.BatchNorm1d(64),
self._function,
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
self._function,
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024),
self._function,
)
self._block3 = nn.Sequential(
nn.Conv1d(1088, 512, 1),
nn.BatchNorm1d(512),
self._function,
nn.Conv1d(512, 256, 1),
nn.BatchNorm1d(256),
self._function,
nn.Conv1d(256, 128, 1),
nn.BatchNorm1d(128),
self._function,
)
self._block4 = nn.Conv1d(128, output_dim, 1)
if self._use_tnet:
self._tnet_transform = ConvTNet(input_dim=input_dim)
self._tnet_feature = ConvTNet(input_dim=64)
def concat(self, embedding, input_):
"""
Returns concatenation of global and local features for Point-Net
:param embedding: global features of Point-Net, shape [batch, $input_{dim}$]
with batch the batch size and $input_{dim}$ the input dimension
of the point cloud.
:type embedding: torch.tensor
:param input_: local features of Point-Net, shape [batch, N, $input_{dim}$]
with batch the batch size, N number of points and $input_{dim}$
the input dimension of the point cloud.
:type input_: torch.tensor
:return: concatenation vector, shape [batch, N, $input_{dim}$]
with batch the batch size, N number of points and $input_{dim}$
:rtype: torch.tensor
"""
n_points = input_.shape[-1]
embedding = embedding.unsqueeze(2).repeat(1, 1, n_points)
return torch.cat([embedding, input_], dim=1)
def forward(self, X):
"""Forward pass for Point-Net
:param X: input tensor, shape [batch, N, $input_{dim}$]
with batch the batch size, N number of points and $input_{dim}$
the input dimension of the point cloud.
:type X: torch.tensor
:return: segmentation vector, shape [batch, N, $output_{dim}$]
with batch the batch size, N number of points and $output_{dim}$
the output dimension of the point cloud.
:rtype: torch.tensor
"""
# permuting indeces
X = X.permute(0, 2, 1)
# using transform tnet if needed
if self._use_tnet:
transform = self._tnet_transform(X)
X = X.transpose(2, 1)
X = torch.matmul(X, transform)
X = X.transpose(2, 1)
# encoding using first MLP
X = self._block1(X)
# using transform tnet if needed
if self._use_tnet:
transform = self._tnet_feature(X)
X = X.transpose(2, 1)
X = torch.matmul(X, transform)
X = X.transpose(2, 1)
# saving latent representation for later concatanation
latent = X
# encoding using second MLP
X = self._block2(X)
# applying symmetric function to aggregate information (using max as default)
X, _ = torch.max(X, dim=-1)
# concatenating with latent vector
X = self.concat(X, latent)
# decoding using third MLP
X = self._block3(X)
# decoding using fourth MLP
X = self._block4(X)
# permuting indeces
X = X.permute(0, 2, 1)
return X

View File

@@ -15,15 +15,20 @@ def _plot_mesh(x, y, y_pred):
y_pred = y_pred[x[:, 0] != -1]
tria = Triangulation(pos[:, 2], pos[:, 3])
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.figure(figsize=(18, 5))
plt.subplot(1, 3, 1)
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("True temperature")
plt.subplot(1, 2, 2)
plt.subplot(1, 3, 2)
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("Predicted temperature")
plt.subplot(1, 3, 3)
plt.tricontourf(tria, torch.abs(y_pred - y).squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("Error")
plt.suptitle("PointNet", fontsize=16)
plt.savefig("point_net.png", dpi=300)