new data format
This commit is contained in:
@@ -64,28 +64,6 @@ class GraphDataModule(LightningDataModule):
|
||||
"test": geometry.select(range(train_len + valid_len, total_len)),
|
||||
}
|
||||
|
||||
def _compute_boundary_mask(
|
||||
self, bottom_ids, right_ids, top_ids, left_ids, temperature
|
||||
):
|
||||
left_ids = left_ids[~torch.isin(left_ids, bottom_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, bottom_ids)]
|
||||
left_ids = left_ids[~torch.isin(left_ids, top_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, top_ids)]
|
||||
|
||||
bottom_bc = temperature[bottom_ids].median()
|
||||
bottom_bc_mask = torch.ones(len(bottom_ids)) * bottom_bc
|
||||
left_bc = temperature[left_ids].median()
|
||||
left_bc_mask = torch.ones(len(left_ids)) * left_bc
|
||||
right_bc = temperature[right_ids].median()
|
||||
right_bc_mask = torch.ones(len(right_ids)) * right_bc
|
||||
|
||||
boundary_values = torch.cat(
|
||||
[bottom_bc_mask, right_bc_mask, left_bc_mask], dim=0
|
||||
)
|
||||
boundary_mask = torch.cat([bottom_ids, right_ids, left_ids], dim=0)
|
||||
|
||||
return boundary_mask, boundary_values
|
||||
|
||||
def _build_dataset(
|
||||
self,
|
||||
snapshot: dict,
|
||||
@@ -96,25 +74,22 @@ class GraphDataModule(LightningDataModule):
|
||||
geometry["conductivity"], dtype=torch.float32
|
||||
)
|
||||
temperatures = (
|
||||
torch.tensor(snapshot["temperatures"], dtype=torch.float32)[:40]
|
||||
torch.tensor(snapshot["unsteady"], dtype=torch.float32)
|
||||
if not test
|
||||
else torch.tensor(snapshot["temperatures"], dtype=torch.float32)[
|
||||
: self.unrolling_steps + 1
|
||||
]
|
||||
else torch.stack(
|
||||
[
|
||||
torch.tensor(snapshot["unsteady"], dtype=torch.float32)[
|
||||
0, ...
|
||||
],
|
||||
torch.tensor(snapshot["steady"], dtype=torch.float32),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
)
|
||||
times = torch.tensor(snapshot["times"], dtype=torch.float32)
|
||||
print(temperatures.shape)
|
||||
|
||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||
|
||||
bottom_ids = torch.tensor(
|
||||
geometry["bottom_boundary_ids"], dtype=torch.long
|
||||
)
|
||||
top_ids = torch.tensor(geometry["top_boundary_ids"], dtype=torch.long)
|
||||
left_ids = torch.tensor(geometry["left_boundary_ids"], dtype=torch.long)
|
||||
right_ids = torch.tensor(
|
||||
geometry["right_boundary_ids"], dtype=torch.long
|
||||
)
|
||||
|
||||
if self.build_radial_graph:
|
||||
raise NotImplementedError(
|
||||
"Radial graph building not implemented yet."
|
||||
@@ -125,17 +100,37 @@ class GraphDataModule(LightningDataModule):
|
||||
).T
|
||||
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
|
||||
|
||||
boundary_mask, boundary_values = self._compute_boundary_mask(
|
||||
bottom_ids, right_ids, top_ids, left_ids, temperatures[0, :]
|
||||
boundary_mask = torch.tensor(
|
||||
geometry["constraints_mask"], dtype=torch.int64
|
||||
)
|
||||
boundary_values = torch.tensor(
|
||||
geometry["constraints_values"], dtype=torch.float32
|
||||
)
|
||||
|
||||
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
|
||||
if self.remove_boundary_edges:
|
||||
boundary_idx = torch.unique(boundary_mask)
|
||||
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
||||
edge_index = edge_index[:, edge_index_mask]
|
||||
edge_attr = edge_attr[edge_index_mask]
|
||||
n_data = temperatures.size(0) - self.unrolling_steps
|
||||
|
||||
n_data = max(temperatures.size(0) - self.unrolling_steps, 1)
|
||||
data = []
|
||||
|
||||
if test:
|
||||
data.append(
|
||||
MeshData(
|
||||
x=temperatures[0, :].unsqueeze(-1),
|
||||
y=temperatures[1:2, :].unsqueeze(-1).permute(1, 0, 2),
|
||||
c=conductivity.unsqueeze(-1),
|
||||
edge_index=edge_index,
|
||||
pos=pos,
|
||||
edge_attr=edge_attr,
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=boundary_values,
|
||||
)
|
||||
)
|
||||
return data
|
||||
for i in range(n_data):
|
||||
x = temperatures[i, :].unsqueeze(-1)
|
||||
y = (
|
||||
|
||||
Reference in New Issue
Block a user