add experiments
This commit is contained in:
@@ -10,8 +10,8 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "16_refined"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "16_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
@@ -24,16 +24,24 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 30
|
||||
verbose: false
|
||||
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
# init_args:
|
||||
# increase_unrolling_steps_by: 5
|
||||
# patience: 10
|
||||
# last_patience: 15
|
||||
# max_unrolling_steps: 20
|
||||
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 4
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
@@ -50,13 +58,14 @@ data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 8
|
||||
split_name: "easy.refined"
|
||||
n_elements: 100
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -10,12 +10,12 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "standard"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "32_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/standard/checkpoints
|
||||
dirpath: logs.autoregressive.wandb/32_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
@@ -24,16 +24,24 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 30
|
||||
verbose: false
|
||||
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
|
||||
# init_args:
|
||||
# increase_unrolling_steps_by: 5
|
||||
# patience: 10
|
||||
# last_patience: 15
|
||||
# max_unrolling_steps: 20
|
||||
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
log_every_n_steps: 0
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
@@ -43,20 +51,21 @@ model:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 8
|
||||
n_layers: 32
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy"
|
||||
split_name: "easy.refined"
|
||||
n_elements: 100
|
||||
batch_size: 16
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -10,12 +10,12 @@ trainer:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "refined"
|
||||
project: "thermal-conduction-unsteady-5.steps"
|
||||
name: "8_layer_16_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/refined/checkpoints
|
||||
dirpath: logs.autoregressive.wandb/8_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
@@ -24,7 +24,7 @@ trainer:
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
patience: 20
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
@@ -32,7 +32,7 @@ trainer:
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
@@ -50,13 +50,14 @@ data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 16
|
||||
split_name: "easy.refined"
|
||||
n_elements: 100
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,62 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "16_8_refined"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/16_8_refined/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
output_dim: 1
|
||||
n_layers: 16
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 16
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,64 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb/wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "5_step_4_layers_16_hidden"
|
||||
# retain: true
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/5_step_4_layers_16_hidden/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 2
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 16
|
||||
output_dim: 1
|
||||
n_layers: 4
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: true
|
||||
radius: 0.5
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,62 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "5_step_4_layers_8_hidden"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/5_step_4_layers_8_hidden_0.7_radius/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
output_dim: 1
|
||||
n_layers: 4
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
@@ -1,62 +0,0 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.WandbLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive.wandb
|
||||
project: "thermal-conduction-unsteady"
|
||||
name: "standard"
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
dirpath: logs.autoregressive.wandb/standard/checkpoints
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 1
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 8
|
||||
output_dim: 1
|
||||
n_layers: 8
|
||||
unrolling_steps: 5
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "100_samples_easy_refined"
|
||||
batch_size: 32
|
||||
train_size: 0.7
|
||||
val_size: 0.2
|
||||
test_size: 0.1
|
||||
build_radial_graph: false
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
Reference in New Issue
Block a user