add experiments

This commit is contained in:
Filippo Olivo
2025-12-09 09:19:26 +01:00
parent c1820d5855
commit 7a2316da04
7 changed files with 45 additions and 276 deletions

View File

@@ -10,8 +10,8 @@ trainer:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady"
name: "16_refined"
project: "thermal-conduction-unsteady-5.steps"
name: "16_layer_16_hidden"
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
@@ -24,16 +24,24 @@ trainer:
init_args:
monitor: val/loss
mode: min
patience: 10
patience: 30
verbose: false
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
# init_args:
# increase_unrolling_steps_by: 5
# patience: 10
# last_patience: 15
# max_unrolling_steps: 20
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
accumulate_grad_batches: 4
log_every_n_steps: 0
accumulate_grad_batches: 1
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
@@ -45,18 +53,19 @@ model:
output_dim: 1
n_layers: 16
unrolling_steps: 5
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "100_samples_easy_refined"
batch_size: 8
split_name: "easy.refined"
n_elements: 100
batch_size: 32
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
start_unrolling_steps: 5
unrolling_steps: 5
optimizer: null
lr_scheduler: null

View File

@@ -10,12 +10,12 @@ trainer:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady"
name: "standard"
project: "thermal-conduction-unsteady-5.steps"
name: "32_layer_16_hidden"
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
dirpath: logs.autoregressive.wandb/standard/checkpoints
dirpath: logs.autoregressive.wandb/32_refined/checkpoints
monitor: val/loss
mode: min
save_top_k: 1
@@ -24,16 +24,24 @@ trainer:
init_args:
monitor: val/loss
mode: min
patience: 10
patience: 30
verbose: false
# - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback
# init_args:
# increase_unrolling_steps_by: 5
# patience: 10
# last_patience: 15
# max_unrolling_steps: 20
# ckpt_path: logs.autoregressive.wandb/16_16_refined/checkpoints
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
log_every_n_steps: 0
accumulate_grad_batches: 2
default_root_dir: null
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
@@ -43,20 +51,21 @@ model:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 8
n_layers: 32
unrolling_steps: 5
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "100_samples_easy"
split_name: "easy.refined"
n_elements: 100
batch_size: 16
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
start_unrolling_steps: 5
unrolling_steps: 5
optimizer: null
lr_scheduler: null

View File

@@ -10,12 +10,12 @@ trainer:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady"
name: "refined"
project: "thermal-conduction-unsteady-5.steps"
name: "8_layer_16_hidden"
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
dirpath: logs.autoregressive.wandb/refined/checkpoints
dirpath: logs.autoregressive.wandb/8_refined/checkpoints
monitor: val/loss
mode: min
save_top_k: 1
@@ -24,7 +24,7 @@ trainer:
init_args:
monitor: val/loss
mode: min
patience: 10
patience: 20
verbose: false
max_epochs: 1000
min_epochs: null
@@ -32,7 +32,7 @@ trainer:
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
accumulate_grad_batches: 2
accumulate_grad_batches: 1
default_root_dir: null
model:
@@ -50,13 +50,14 @@ data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "100_samples_easy_refined"
batch_size: 16
split_name: "easy.refined"
n_elements: 100
batch_size: 32
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
start_unrolling_steps: 5
unrolling_steps: 5
optimizer: null
lr_scheduler: null

View File

@@ -1,62 +0,0 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady"
name: "16_8_refined"
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
dirpath: logs.autoregressive.wandb/16_8_refined/checkpoints
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 10
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
accumulate_grad_batches: 2
default_root_dir: null
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 8
output_dim: 1
n_layers: 16
unrolling_steps: 5
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "100_samples_easy_refined"
batch_size: 16
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
start_unrolling_steps: 5
optimizer: null
lr_scheduler: null

View File

@@ -1,64 +0,0 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb/wandb
project: "thermal-conduction-unsteady"
name: "5_step_4_layers_16_hidden"
# retain: true
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
dirpath: logs.autoregressive.wandb/5_step_4_layers_16_hidden/checkpoints
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 10
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
accumulate_grad_batches: 2
default_root_dir: null
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 16
output_dim: 1
n_layers: 4
unrolling_steps: 5
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "100_samples_easy_refined"
batch_size: 32
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: true
radius: 0.5
remove_boundary_edges: true
start_unrolling_steps: 5
optimizer: null
lr_scheduler: null

View File

@@ -1,62 +0,0 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady"
name: "5_step_4_layers_8_hidden"
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
dirpath: logs.autoregressive.wandb/5_step_4_layers_8_hidden_0.7_radius/checkpoints
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 10
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
accumulate_grad_batches: 1
default_root_dir: null
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 8
output_dim: 1
n_layers: 4
unrolling_steps: 5
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "100_samples_easy_refined"
batch_size: 32
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
start_unrolling_steps: 5
optimizer: null
lr_scheduler: null

View File

@@ -1,62 +0,0 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.WandbLogger
init_args:
save_dir: logs.autoregressive.wandb
project: "thermal-conduction-unsteady"
name: "standard"
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
dirpath: logs.autoregressive.wandb/standard/checkpoints
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 10
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
accumulate_grad_batches: 1
default_root_dir: null
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet
model_init_args:
input_dim: 1
hidden_dim: 8
output_dim: 1
n_layers: 8
unrolling_steps: 5
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "100_samples_easy_refined"
batch_size: 32
train_size: 0.7
val_size: 0.2
test_size: 0.1
build_radial_graph: false
remove_boundary_edges: true
start_unrolling_steps: 5
optimizer: null
lr_scheduler: null