implement new model
This commit is contained in:
@@ -17,6 +17,7 @@ class GraphDataModule(LightningDataModule):
|
||||
val_size: float = 0.1,
|
||||
test_size: float = 0.1,
|
||||
batch_size: int = 32,
|
||||
remove_boundary_edges: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.hf_repo = hf_repo
|
||||
@@ -27,6 +28,7 @@ class GraphDataModule(LightningDataModule):
|
||||
self.val_size = val_size
|
||||
self.test_size = test_size
|
||||
self.batch_size = batch_size
|
||||
self.remove_boundary_edges = remove_boundary_edges
|
||||
|
||||
def prepare_data(self):
|
||||
hf_dataset = load_dataset(self.hf_repo, name="snapshots")[
|
||||
@@ -44,6 +46,28 @@ class GraphDataModule(LightningDataModule):
|
||||
)
|
||||
]
|
||||
|
||||
def _compute_boundary_mask(
|
||||
self, bottom_ids, right_ids, top_ids, left_ids, temperature
|
||||
):
|
||||
left_ids = left_ids[~torch.isin(left_ids, bottom_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, bottom_ids)]
|
||||
left_ids = left_ids[~torch.isin(left_ids, top_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, top_ids)]
|
||||
|
||||
bottom_bc = temperature[bottom_ids].median()
|
||||
bottom_bc_mask = torch.ones(len(bottom_ids)) * bottom_bc
|
||||
left_bc = temperature[left_ids].median()
|
||||
left_bc_mask = torch.ones(len(left_ids)) * left_bc
|
||||
right_bc = temperature[right_ids].median()
|
||||
right_bc_mask = torch.ones(len(right_ids)) * right_bc
|
||||
|
||||
boundary_values = torch.cat(
|
||||
[bottom_bc_mask, right_bc_mask, left_bc_mask], dim=0
|
||||
)
|
||||
boundary_mask = torch.cat([bottom_ids, right_ids, left_ids], dim=0)
|
||||
|
||||
return boundary_mask, boundary_values
|
||||
|
||||
def _build_dataset(
|
||||
self,
|
||||
snapshot: dict,
|
||||
@@ -66,27 +90,34 @@ class GraphDataModule(LightningDataModule):
|
||||
)
|
||||
|
||||
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
|
||||
|
||||
boundary_mask, boundary_values = self._compute_boundary_mask(
|
||||
bottom_ids, right_ids, top_ids, left_ids, temperature
|
||||
)
|
||||
|
||||
if self.remove_boundary_edges:
|
||||
boundary_idx = torch.unique(boundary_mask)
|
||||
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
||||
edge_index = edge_index[:, edge_index_mask]
|
||||
|
||||
edge_attr = pos[edge_index[0]] - pos[edge_index[1]]
|
||||
edge_attr = torch.cat(
|
||||
[edge_attr, torch.norm(edge_attr, dim=1).unsqueeze(-1)], dim=1
|
||||
)
|
||||
|
||||
left_ids = left_ids[~torch.isin(left_ids, bottom_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, bottom_ids)]
|
||||
left_ids = left_ids[~torch.isin(left_ids, top_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, top_ids)]
|
||||
|
||||
bottom_bc = temperature[bottom_ids].median()
|
||||
bottom_bc_mask = torch.ones(len(bottom_ids)) * bottom_bc
|
||||
left_bc = temperature[left_ids].median()
|
||||
left_bc_mask = torch.ones(len(left_ids)) * left_bc
|
||||
right_bc = temperature[right_ids].median()
|
||||
right_bc_mask = torch.ones(len(right_ids)) * right_bc
|
||||
|
||||
boundary_values = torch.cat(
|
||||
[bottom_bc_mask, right_bc_mask, left_bc_mask], dim=0
|
||||
)
|
||||
boundary_mask = torch.cat([bottom_ids, right_ids, left_ids], dim=0)
|
||||
x = torch.zeros_like(temperature, dtype=torch.float32).unsqueeze(-1)
|
||||
if self.remove_boundary_edges:
|
||||
x[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
return MeshData(
|
||||
x=x,
|
||||
c=conductivity.unsqueeze(-1),
|
||||
edge_index=edge_index,
|
||||
pos=pos,
|
||||
edge_attr=edge_attr,
|
||||
y=temperature.unsqueeze(-1),
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=torch.tensor(0),
|
||||
)
|
||||
|
||||
return MeshData(
|
||||
x=torch.rand_like(temperature).unsqueeze(-1),
|
||||
@@ -110,7 +141,6 @@ class GraphDataModule(LightningDataModule):
|
||||
if stage == "test" or stage is None:
|
||||
self.test_data = self.data[val_end:]
|
||||
|
||||
# nel tuo LightningDataModule
|
||||
def train_dataloader(self):
|
||||
return DataLoader(
|
||||
self.train_data, batch_size=self.batch_size, shuffle=True
|
||||
|
||||
Reference in New Issue
Block a user