implement new model

This commit is contained in:
Filippo Olivo
2025-10-03 10:42:05 +02:00
parent b1a9cecb42
commit 7a6fbdb89c
3 changed files with 80 additions and 54 deletions

View File

@@ -1,31 +1,26 @@
import torch
from lightning import LightningModule
from torch_geometric.data import Batch
from matplotlib.tri import Triangulation
import importlib
# def plot_results(x, pos, step, i, batch):
# x = x[batch == 0]
# pos = pos[batch == 0]
# tria = Triangulation(pos[:, 0].cpu(), pos[:, 1].cpu())
# import matplotlib.pyplot as plt
# plt.tricontourf(tria, x[:, 0].cpu(), levels=14)
# plt.colorbar()
# plt.savefig(f"{step:03d}_out_{i:03d}.png")
# plt.axis("equal")
# plt.close()
def import_class(class_path: str):
module_path, class_name = class_path.rsplit(".", 1) # split last dot
module = importlib.import_module(module_path) # import the module
cls = getattr(module, class_name) # get the class
return cls
class GraphSolver(LightningModule):
def __init__(
self,
model: torch.nn.Module,
model_class_path: str,
model_init_args: dict,
loss: torch.nn.Module = None,
unrolling_steps: int = 48,
):
super().__init__()
self.model = model
self.model = import_class(model_class_path)(**model_init_args)
self.loss = loss if loss is not None else torch.nn.MSELoss()
self.unrolling_steps = unrolling_steps
@@ -57,7 +52,7 @@ class GraphSolver(LightningModule):
def _log_loss(self, loss, batch, stage: str):
self.log(
f"{stage}_loss",
f"{stage}/loss",
loss,
on_step=False,
on_epoch=True,
@@ -68,8 +63,6 @@ class GraphSolver(LightningModule):
def training_step(self, batch: Batch, _):
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
# x = self._impose_bc(x, batch)
# for _ in range(self.unrolling_steps):
y_pred = self(
x,
c,
@@ -79,9 +72,12 @@ class GraphSolver(LightningModule):
edge_attr=edge_attr,
unrolling_steps=self.unrolling_steps,
)
# x = self._impose_bc(x, batch)
loss = self.loss(y_pred, y)
boundary_loss = self.loss(
y_pred[batch.boundary_mask], y[batch.boundary_mask]
)
self._log_loss(loss, batch, "train")
self._log_loss(boundary_loss, batch, "train_boundary")
return loss
def validation_step(self, batch: Batch, _):
@@ -96,12 +92,15 @@ class GraphSolver(LightningModule):
unrolling_steps=self.unrolling_steps,
)
loss = self.loss(y_pred, y)
boundary_loss = self.loss(
y_pred[batch.boundary_mask], y[batch.boundary_mask]
)
self._log_loss(loss, batch, "val")
self._log_loss(boundary_loss, batch, "val_boundary")
return loss
def test_step(self, batch: Batch, _):
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
# for _ in range(self.unrolling_steps):
y_pred = self.model(
x,
c,
@@ -114,8 +113,6 @@ class GraphSolver(LightningModule):
batch=batch.batch,
pos=batch.pos,
)
# x = self._impose_bc(x, batch)
# plot_results(x, batch.pos, self.global_step, _, batch.batch)
loss = self._compute_loss(y_pred, y)
self._log_loss(loss, batch, "test")
return loss