transfer files
This commit is contained in:
@@ -5,7 +5,7 @@ import importlib
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.tri import Triangulation
|
||||
from .model.finite_difference import FiniteDifferenceStep
|
||||
|
||||
import os
|
||||
|
||||
def import_class(class_path: str):
|
||||
module_path, class_name = class_path.rsplit(".", 1) # split last dot
|
||||
@@ -14,13 +14,15 @@ def import_class(class_path: str):
|
||||
return cls
|
||||
|
||||
|
||||
def _plot_mesh(pos, y, y_pred, batch, i):
|
||||
def _plot_mesh(pos, y, y_pred, batch, i, batch_idx):
|
||||
|
||||
idx = batch == 0
|
||||
y = y[idx].detach().cpu()
|
||||
y_pred = y_pred[idx].detach().cpu()
|
||||
pos = pos[idx].detach().cpu()
|
||||
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
if os.path.exists(folder) is False:
|
||||
os.makedirs(folder)
|
||||
pos = pos.detach().cpu()
|
||||
tria = Triangulation(pos[:, 0], pos[:, 1])
|
||||
plt.figure(figsize=(18, 5))
|
||||
@@ -37,10 +39,23 @@ def _plot_mesh(pos, y, y_pred, batch, i):
|
||||
plt.colorbar()
|
||||
plt.title("Error")
|
||||
plt.suptitle("GNO", fontsize=16)
|
||||
name = f"images/graph_iter_{i:04d}.png"
|
||||
name = f"{folder}/graph_iter_{i:04d}.png"
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
|
||||
def _plot_losses(losses, batch_idx):
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
plt.figure()
|
||||
plt.plot(losses)
|
||||
plt.yscale("log")
|
||||
plt.xlabel("Iteration")
|
||||
plt.ylabel("Loss")
|
||||
plt.title("Test Loss over Iterations")
|
||||
plt.grid(True)
|
||||
file_name = f"{folder}/test_loss.png"
|
||||
plt.savefig(file_name, dpi=300)
|
||||
plt.close()
|
||||
|
||||
|
||||
class GraphSolver(LightningModule):
|
||||
def __init__(
|
||||
@@ -231,7 +246,6 @@ class GraphSolver(LightningModule):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
|
||||
for i in range(self.current_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
@@ -257,36 +271,8 @@ class GraphSolver(LightningModule):
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
|
||||
def test_step(self, batch: Batch, _):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
|
||||
for i in range(self.max_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr.unsqueeze(-1),
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
converged = self._check_convergence(out, x)
|
||||
# _plot_mesh(batch.pos, y, out, batch.batch, i)
|
||||
if converged:
|
||||
break
|
||||
x = out
|
||||
loss = self.loss(out, y)
|
||||
|
||||
self._log_loss(loss, batch, "test")
|
||||
self.log(
|
||||
"test/iterations",
|
||||
i + 1,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
def test_step(self, batch: Batch, batch_idx):
|
||||
pass
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
|
||||
|
||||
Reference in New Issue
Block a user