transfer files

This commit is contained in:
Filippo Olivo
2025-11-25 19:19:31 +01:00
parent edba700d2a
commit 88bc5c05e4
13 changed files with 926 additions and 163 deletions

View File

@@ -20,7 +20,7 @@ trainer:
mode: min
patience: 10
verbose: false
max_epochs: 200
max_epochs: 2000
min_epochs: null
max_steps: -1
min_steps: null

View File

@@ -9,8 +9,8 @@ trainer:
logger:
- class_path: lightning.pytorch.loggers.TensorBoardLogger
init_args:
save_dir: lightning_logs
name: "01"
save_dir: logs
name: "test"
version: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
@@ -33,26 +33,21 @@ trainer:
log_every_n_steps: null
inference_mode: true
default_root_dir: null
accumulate_grad_batches: 6
# gradient_clip_val: 1.0
accumulate_grad_batches: 4
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.module.GraphSolver
class_path: ThermalSolver.graph_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.local_gno.GatingGNO
model_class_path: ThermalSolver.model.LearnableGraphFiniteDifference
model_init_args:
x_ch_node: 1
f_ch_node: 1
hidden: 16
layers: 1
edge_ch: 3
out_ch: 1
max_iters: 250
unrolling_steps: 64
data:
class_path: ThermalSolver.data_module.GraphDataModule
class_path: ThermalSolver.graph_datamodule.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction"
split_name: "2000_ref_1"
batch_size: 4
split_name: "1000_40x30"
batch_size: 8
train_size: 0.8
test_size: 0.1
test_size: 0.1

View File

@@ -33,11 +33,11 @@ trainer:
log_every_n_steps: null
inference_mode: true
default_root_dir: null
accumulate_grad_batches: 6
accumulate_grad_batches: 2
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.module.GraphSolver
class_path: ThermalSolver.graph_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.local_gno.GatingGNO
model_init_args:
@@ -49,11 +49,11 @@ model:
out_ch: 1
unrolling_steps: 1
data:
class_path: ThermalSolver.data_module.GraphDataModule
class_path: ThermalSolver.graph_datamodule.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction"
split_name: "2000"
batch_size: 4
split_name: "2000_ref_1"
batch_size: 10
train_size: 0.8
test_size: 0.1
test_size: 0.1

View File

@@ -0,0 +1,70 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.TensorBoardLogger
init_args:
save_dir: logs.autoregressive
name: "test"
version: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 50
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
accumulate_grad_batches: 1
# reload_dataloaders_every_n_epochs: 1
default_root_dir: null
model:
class_path: ThermalSolver.autoregressive_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.learnable_finite_difference.CorrectionNet
model_init_args:
input_dim: 1
hidden_dim: 24
# output_dim: 1
n_layers: 1
start_unrolling_steps: 1
increase_every: 100000
increase_rate: 2
max_inference_iters: 300
max_unrolling_steps: 40
inner_steps: 1
data:
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
split_name: "50_samples_easy"
batch_size: 64
train_size: 0.02
val_size: 0.02
test_size: 0.96
build_radial_graph: true
radius: 0.5
remove_boundary_edges: true
start_unrolling_steps: 1
optimizer: null
lr_scheduler: null
# ckpt_path: logs/test/version_0/checkpoints/best-checkpoint.ckpt

View File

@@ -0,0 +1,58 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.TensorBoardLogger
init_args:
save_dir: logs
name: "fd"
version: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 2
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
inference_mode: true
default_root_dir: null
accumulate_grad_batches: 4
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.graph_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.GraphFiniteDifference
# model_init_args:
max_iters: 10000
# unrolling_steps: 64
data:
class_path: ThermalSolver.graph_datamodule.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction"
split_name: "1000_1_40x30"
batch_size: 8
train_size: 0.8
test_size: 0.1
test_size: 0.1
# build_radial_graph: true
# radius: 1.5
optimizer: null
lr_scheduler: null
# ckpt_path: lightning_logs/01/version_0/checkpoints/best-checkpoint.ckpt

View File

@@ -0,0 +1,74 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.TensorBoardLogger
init_args:
save_dir: logs
name: "test"
version: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 15
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
inference_mode: true
default_root_dir: null
# accumulate_grad_batches: 2
# gradient_clip_val: 1.0
model:
class_path: ThermalSolver.graph_module.GraphSolver
init_args:
model_class_path: neuralop.models import GINO
model_init_args:
in_channels: 3 # Es: coordinate (x, y, z) + valore della conducibilità k
out_channels: 1 # Es: temperatura T
# Parametri per l'encoder e il decoder GNO
gno_coord_features=3, # Dimensionalità delle coordinate per GNO (es. 3D)
gno_n_layers=2, # Numero di layer GNO nell'encoder e nel decoder
gno_hidden_channels=64, # Canali nascosti per i layer GNO
# Parametri per il processore FNO
fno_n_modes=(16, 16, 16), # Numero di modi di Fourier per ogni dimensione
fno_n_layers=4, # Numero di layer FNO
fno_hidden_channels=64, # Canali nascosti per i layer FNO
# Canali per il lifting e la proiezione
lifting_channels=256, # Dimensione dello spazio latente dopo il lifting iniziale
projection_channels=256, # Dimensione prima della proiezione finale
# Padding del dominio per il processore FNO
domain_padding=0.05
# unrolling_steps: 64
data:
class_path: ThermalSolver.graph_datamodule.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction"
split_name: "2000_ref_1"
batch_size: 64
train_size: 0.8
test_size: 0.1
test_size: 0.1
optimizer: null
lr_scheduler: null
# ckpt_path: lightning_logs/01/version_0/checkpoints/best-checkpoint.ckpt

View File

@@ -44,12 +44,12 @@ model:
increase_every: 10
increase_rate: 2
max_iters: 2000
accumulation_iters: 320
accumulation_iters: 160
data:
class_path: ThermalSolver.graph_datamodule.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction"
split_name: "1000_40x30"
split_name: "1000_1_40x30"
batch_size: 32
train_size: 0.8
test_size: 0.1

View File

@@ -0,0 +1,62 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.TensorBoardLogger
init_args:
save_dir: logs_inference
name: "test"
version: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 25
verbose: false
max_epochs: 1000
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
# inference_mode: true
default_root_dir: null
# accumulate_grad_batches: 2
# gradient_clip_val: 1.0
model:
class_path: ThermalSolver.graph_module.GraphSolver
init_args:
model_class_path: ThermalSolver.model.finite_difference.FiniteDifferenceStep
curriculum_learning: true
start_iters: 5
increase_every: 10
increase_rate: 2
max_iters: 2000
accumulation_iters: 320
data:
class_path: ThermalSolver.graph_datamodule.GraphDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction"
split_name: "1000_3_40x30"
batch_size: 10
train_size: 0.8
test_size: 0.1
test_size: 0.1
build_radial_graph: True
radius: 1.2
remove_boundary_edges: false
optimizer: null
lr_scheduler: null
# ckpt_path: logs/test/version_2/checkpoints/best-checkpoint.ckpt

View File

@@ -0,0 +1,56 @@
# lightning.pytorch==2.5.5
seed_everything: 1999
trainer:
accelerator: gpu
strategy: auto
devices: 1
num_nodes: 1
precision: null
logger:
- class_path: lightning.pytorch.loggers.TensorBoardLogger
init_args:
save_dir: lightning_logs
name: "pointnet"
version: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
monitor: val/loss
mode: min
save_top_k: 1
filename: best-checkpoint
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
monitor: val/loss
mode: min
patience: 10
verbose: false
max_epochs: 200
min_epochs: null
max_steps: -1
min_steps: null
overfit_batches: 0.0
log_every_n_steps: null
inference_mode: true
default_root_dir: null
accumulate_grad_batches: 2
gradient_clip_val: 1.0
model:
class_path: ThermalSolver.point_module.PointSolver
init_args:
model_class_path: ThermalSolver.model.point_net.PointNet
model_init_args:
input_dim: 4
output_dim: 1
data:
class_path: ThermalSolver.point_datamodule.PointDataModule
init_args:
hf_repo: "SISSAmathLab/thermal-conduction"
split_name: "2000"
batch_size: 10
train_size: 0.8
test_size: 0.1
test_size: 0.1
optimizer: null
lr_scheduler: null
# ckpt_path: lightning_logs/pointnet/version_0/checkpoints/best-checkpoint.ckpt