Add pointnet

This commit is contained in:
2025-10-16 15:20:58 +02:00
parent 81455d789c
commit 8f23a8af66
4 changed files with 837 additions and 1 deletions

View File

@@ -0,0 +1,171 @@
import torch
from tqdm import tqdm
from lightning import LightningDataModule
from datasets import load_dataset
import os
from torch.utils.data import DataLoader, TensorDataset
from torch.nn.utils.rnn import pad_sequence
class PointDataModule(LightningDataModule):
def __init__(
self,
hf_repo: str,
split_name: str,
train_size: float = 0.2,
val_size: float = 0.1,
test_size: float = 0.1,
batch_size: int = 32,
remove_boundary_edges: bool = True,
):
super().__init__()
self.hf_repo = hf_repo
self.split_name = split_name
self.dataset_dict = {}
self.geometry_dict = {}
self.train_size = train_size
self.val_size = val_size
self.test_size = test_size
self.batch_size = batch_size
self.remove_boundary_edges = remove_boundary_edges
def prepare_data(self):
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
total_len = len(dataset)
train_len = int(self.train_size * total_len)
valid_len = int(self.val_size * total_len)
self.dataset_dict = {
"train": dataset.select(range(0, train_len)),
"val": dataset.select(range(train_len, train_len + valid_len)),
"test": dataset.select(range(train_len + valid_len, total_len)),
}
self.geometry_dict = {
"train": geometry.select(range(0, train_len)),
"val": geometry.select(range(train_len, train_len + valid_len)),
"test": geometry.select(range(train_len + valid_len, total_len)),
}
def _compute_boundary_mask(
self, bottom_ids, right_ids, top_ids, left_ids, temperature
):
left_ids = left_ids[~torch.isin(left_ids, bottom_ids)]
right_ids = right_ids[~torch.isin(right_ids, bottom_ids)]
left_ids = left_ids[~torch.isin(left_ids, top_ids)]
right_ids = right_ids[~torch.isin(right_ids, top_ids)]
bottom_bc = temperature[bottom_ids].median()
bottom_bc_mask = torch.ones(len(bottom_ids)) * bottom_bc
left_bc = temperature[left_ids].median()
left_bc_mask = torch.ones(len(left_ids)) * left_bc
right_bc = temperature[right_ids].median()
right_bc_mask = torch.ones(len(right_ids)) * right_bc
boundary_values = torch.cat(
[bottom_bc_mask, right_bc_mask, left_bc_mask], dim=0
)
boundary_mask = torch.cat([bottom_ids, right_ids, left_ids], dim=0)
return boundary_mask, boundary_values
def _build_dataset(
self,
snapshot: dict,
geometry: dict,
) -> tuple[torch.Tensor, torch.Tensor]:
conductivity = torch.tensor(
snapshot["conductivity"], dtype=torch.float32
)
temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32)
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
bottom_ids = torch.tensor(
geometry["bottom_boundary_ids"], dtype=torch.long
)
top_ids = torch.tensor(geometry["top_boundary_ids"], dtype=torch.long)
left_ids = torch.tensor(geometry["left_boundary_ids"], dtype=torch.long)
right_ids = torch.tensor(
geometry["right_boundary_ids"], dtype=torch.long
)
boundary_mask, boundary_values = self._compute_boundary_mask(
bottom_ids, right_ids, top_ids, left_ids, temperature
)
x = torch.zeros_like(temperature, dtype=torch.float32).unsqueeze(-1)
x[boundary_mask] = boundary_values.unsqueeze(-1)
x = torch.cat([x, conductivity.unsqueeze(-1), pos], dim=-1)
return x, temperature.unsqueeze(-1)
def setup(self, stage: str = None):
if stage == "fit" or stage is None:
x = []
y = []
for snap, geom in tqdm(
zip(self.dataset_dict["train"], self.geometry_dict["train"]),
desc="Building train graphs",
total=len(self.dataset_dict["train"]),
):
x_i, y_i = self._build_dataset(snap, geom)
x.append(x_i)
y.append(y_i)
self.train_dataset = TensorDataset(
pad_sequence(x, batch_first=True, padding_value=-1),
pad_sequence(y, batch_first=True, padding_value=-1),
)
for snap, geom in tqdm(
zip(self.dataset_dict["val"], self.geometry_dict["val"]),
desc="Building val graphs",
total=len(self.dataset_dict["val"]),
):
x_i, y_i = self._build_dataset(snap, geom)
x.append(x_i)
y.append(y_i)
self.val_dataset = TensorDataset(
pad_sequence(x, batch_first=True, padding_value=-1),
pad_sequence(y, batch_first=True, padding_value=-1),
)
if stage == "test" or stage is None:
x = []
y = []
for snap, geom in tqdm(
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
desc="Building test graphs",
total=len(self.dataset_dict["test"]),
):
x_i, y_i = self._build_dataset(snap, geom)
x.append(x_i)
y.append(y_i)
self.test_data = TensorDataset(
pad_sequence(x, batch_first=True, padding_value=-1),
pad_sequence(y, batch_first=True, padding_value=-1),
)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=8,
pin_memory=True,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=8,
pin_memory=True,
)
def test_dataloader(self):
return DataLoader(
self.test_data,
batch_size=self.batch_size,
shuffle=False,
num_workers=8,
pin_memory=True,
)