Gradient accumulation in BPTT (#2)
This commit is contained in:
@@ -13,7 +13,7 @@ def import_class(class_path: str):
|
||||
return cls
|
||||
|
||||
|
||||
def _plot_mesh(pos, y, y_pred, batch):
|
||||
def _plot_mesh(pos, y, y_pred, batch, i):
|
||||
|
||||
idx = batch == 0
|
||||
y = y[idx].detach().cpu()
|
||||
@@ -36,41 +36,41 @@ def _plot_mesh(pos, y, y_pred, batch):
|
||||
plt.colorbar()
|
||||
plt.title("Error")
|
||||
plt.suptitle("GNO", fontsize=16)
|
||||
plt.savefig("gno.png", dpi=300)
|
||||
name = f"images/graph_iter_{i:04d}.png"
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
|
||||
|
||||
class GraphSolver(LightningModule):
|
||||
def __init__(
|
||||
self,
|
||||
model_class_path: str,
|
||||
model_init_args: dict,
|
||||
model_init_args: dict = {},
|
||||
loss: torch.nn.Module = None,
|
||||
unrolling_steps: int = 48,
|
||||
curriculum_learning: bool = False,
|
||||
start_iters: int = 10,
|
||||
increase_every: int = 100,
|
||||
increase_rate: float = 1.1,
|
||||
max_iters: int = 1000,
|
||||
accumulation_iters: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.model = import_class(model_class_path)(**model_init_args)
|
||||
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
||||
self.unrolling_steps = unrolling_steps
|
||||
self.curriculum_learning = curriculum_learning
|
||||
self.start_iters = start_iters
|
||||
self.increase_every = increase_every
|
||||
self.increase_rate = increase_rate
|
||||
self.max_iters = max_iters
|
||||
self.current_iters = start_iters
|
||||
self.accumulation_iters = accumulation_iters
|
||||
self.automatic_optimization = False
|
||||
self.threshold = 1e-2
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
c: torch.Tensor,
|
||||
edge_index: torch.Tensor,
|
||||
edge_attr: torch.Tensor,
|
||||
unrolling_steps: int = None,
|
||||
boundary_mask: torch.Tensor = None,
|
||||
boundary_values: torch.Tensor = None,
|
||||
):
|
||||
return self.model(
|
||||
x=x,
|
||||
c=c,
|
||||
edge_index=edge_index,
|
||||
edge_attr=edge_attr,
|
||||
unrolling_steps=unrolling_steps,
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=boundary_values,
|
||||
)
|
||||
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
||||
return deg + 1e-7
|
||||
|
||||
def _compute_loss(self, x, y):
|
||||
return self.loss(x, y)
|
||||
@@ -89,89 +89,207 @@ class GraphSolver(LightningModule):
|
||||
)
|
||||
return loss
|
||||
|
||||
def training_step(self, batch: Batch, _):
|
||||
@staticmethod
|
||||
def _compute_c_ij(c, edge_index):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
|
||||
|
||||
def _compute_model_steps(
|
||||
self, x, edge_index, edge_attr, deg, boundary_mask, boundary_values
|
||||
):
|
||||
out = self.model(x, edge_index, edge_attr, deg)
|
||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
return out
|
||||
|
||||
def _check_convergence(self, out, x):
|
||||
residual_norm = torch.norm(out - x)
|
||||
if residual_norm < self.threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
def accumulate_gradients(self, losses, max_acc_iters):
|
||||
loss_ = torch.stack(losses, dim=0).mean()
|
||||
loss = loss_ / self.accumulation_iters
|
||||
self.manual_backward(loss / max_acc_iters)
|
||||
return loss_.item()
|
||||
|
||||
def training_step(self, batch: Batch, batch_idx: int):
|
||||
optim = self.optimizers()
|
||||
optim.zero_grad()
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
y_pred, it = self(
|
||||
x,
|
||||
c,
|
||||
edge_index=edge_index,
|
||||
edge_attr=edge_attr,
|
||||
unrolling_steps=self.unrolling_steps,
|
||||
boundary_mask=batch.boundary_mask,
|
||||
boundary_values=batch.boundary_values,
|
||||
|
||||
edge_w = 1 / edge_attr[:, -1]
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_w = edge_w * c_ij
|
||||
deg = self._compute_deg(edge_index, edge_w, x.size(0))
|
||||
|
||||
edge_attr = torch.cat(
|
||||
[edge_attr, edge_w.unsqueeze(-1), c_ij.unsqueeze(-1)], dim=1
|
||||
)
|
||||
loss = self.loss(y_pred, y)
|
||||
boundary_loss = self.loss(
|
||||
y_pred[batch.boundary_mask], y[batch.boundary_mask]
|
||||
losses = []
|
||||
acc_loss, acc_it = 0, 0
|
||||
max_acc_iters = (
|
||||
self.current_iters // self.accumulation_iters + 1
|
||||
if self.accumulation_iters is not None
|
||||
else 1
|
||||
)
|
||||
self._log_loss(loss, batch, "train")
|
||||
# self._log_loss(boundary_loss, batch, "train_boundary")
|
||||
for i in range(self.current_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
losses.append(self.loss(out, y))
|
||||
|
||||
# Accumulate gradients if reached accumulation iters
|
||||
if (
|
||||
self.accumulation_iters is not None
|
||||
and (i + 1) % self.accumulation_iters == 0
|
||||
):
|
||||
loss = self.accumulate_gradients(losses, max_acc_iters)
|
||||
losses = []
|
||||
acc_it += 1
|
||||
out = out.detach()
|
||||
acc_loss = acc_loss + loss
|
||||
|
||||
# Check for convergence and break if converged (with final accumulation)
|
||||
converged = self._check_convergence(out, x)
|
||||
if converged:
|
||||
if losses:
|
||||
loss = self.accumulate_gradients(losses, max_acc_iters)
|
||||
acc_it += 1
|
||||
acc_loss = acc_loss + loss
|
||||
break
|
||||
|
||||
# Final accumulation if we are at the last iteration
|
||||
if i == self.current_iters - 1:
|
||||
if losses:
|
||||
loss = self.accumulate_gradients(losses, max_acc_iters)
|
||||
acc_it += 1
|
||||
acc_loss = acc_loss + loss
|
||||
|
||||
x = out
|
||||
|
||||
optim.step()
|
||||
optim.zero_grad()
|
||||
|
||||
self._log_loss(acc_loss / acc_it, batch, "train")
|
||||
self.log(
|
||||
"train/iterations",
|
||||
it,
|
||||
i + 1,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
self.log(
|
||||
"train/param_p",
|
||||
self.model.fd_step.p,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
# self.log("train/param_a", self.model.fd_step.a, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs))
|
||||
return loss
|
||||
|
||||
def on_train_epoch_end(self):
|
||||
if self.curriculum_learning:
|
||||
if (self.current_iters < self.max_iters) and (
|
||||
self.current_epoch % self.increase_every == 0
|
||||
):
|
||||
self.current_iters = min(
|
||||
int(self.current_iters * self.increase_rate), self.max_iters
|
||||
)
|
||||
return super().on_train_epoch_end()
|
||||
|
||||
def validation_step(self, batch: Batch, _):
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
y_pred, it = self(
|
||||
x,
|
||||
c,
|
||||
edge_index=edge_index,
|
||||
edge_attr=edge_attr,
|
||||
unrolling_steps=self.unrolling_steps,
|
||||
boundary_mask=batch.boundary_mask,
|
||||
boundary_values=batch.boundary_values,
|
||||
)
|
||||
loss = self.loss(y_pred, y)
|
||||
boundary_loss = self.loss(
|
||||
y_pred[batch.boundary_mask], y[batch.boundary_mask]
|
||||
|
||||
edge_w = 1 / edge_attr[:, -1]
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_w = edge_w * c_ij
|
||||
deg = self._compute_deg(edge_index, edge_w, x.size(0))
|
||||
|
||||
edge_attr = torch.cat(
|
||||
[edge_attr, edge_w.unsqueeze(-1), c_ij.unsqueeze(-1)], dim=1
|
||||
)
|
||||
for i in range(self.current_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
converged = self._check_convergence(out, x)
|
||||
|
||||
if converged:
|
||||
break
|
||||
x = out
|
||||
loss = self.loss(out, y)
|
||||
self._log_loss(loss, batch, "val")
|
||||
self.log(
|
||||
"val/iterations",
|
||||
it,
|
||||
i + 1,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
return loss
|
||||
|
||||
def test_step(self, batch: Batch, _):
|
||||
# x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
# y_pred, _ = self.model(
|
||||
# x,
|
||||
# edge_index,
|
||||
# edge_attr,
|
||||
# c,
|
||||
# batch.boundary_mask,
|
||||
# batch.boundary_values,
|
||||
# y=None,
|
||||
# loss_fn=None,
|
||||
# max_iters=1000,
|
||||
# plot_results=True,
|
||||
# batch=batch,
|
||||
# )
|
||||
# loss = self._compute_loss(y_pred, y)
|
||||
# # _plot_mesh(batch.pos, y, y_pred, batch.batch)
|
||||
# self._log_loss(loss, batch, "test")
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
y_pred, _ = self.model(
|
||||
x=x,
|
||||
c=c,
|
||||
edge_index=edge_index,
|
||||
edge_attr=edge_attr,
|
||||
unrolling_steps=self.unrolling_steps,
|
||||
batch=batch.batch,
|
||||
pos=batch.pos,
|
||||
boundary_mask=batch.boundary_mask,
|
||||
boundary_values=batch.boundary_values,
|
||||
plot_results=False,
|
||||
edge_w = 1 / edge_attr[:, -1]
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_w = edge_w * c_ij
|
||||
deg = self._compute_deg(edge_index, edge_w, x.size(0))
|
||||
|
||||
edge_attr = torch.cat(
|
||||
[edge_attr, edge_w.unsqueeze(-1), c_ij.unsqueeze(-1)], dim=1
|
||||
)
|
||||
loss = self._compute_loss(y_pred, y)
|
||||
_plot_mesh(batch.pos, y, y_pred, batch.batch)
|
||||
for i in range(self.max_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
converged = self._check_convergence(out, x)
|
||||
_plot_mesh(batch.pos, y, out, batch.batch, i)
|
||||
if converged:
|
||||
break
|
||||
x = out
|
||||
loss = self.loss(out, y)
|
||||
|
||||
self._log_loss(loss, batch, "test")
|
||||
return loss
|
||||
x = u
|
||||
self.log(
|
||||
"test/iterations",
|
||||
i + 1,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
|
||||
return optimizer
|
||||
|
||||
def _impose_bc(self, x: torch.Tensor, data: Batch):
|
||||
|
||||
Reference in New Issue
Block a user