fix model and datamodule

This commit is contained in:
Filippo Olivo
2025-12-15 09:08:21 +01:00
parent 3cc1d230e4
commit a9d56a3ed9
2 changed files with 69 additions and 50 deletions

View File

@@ -1,18 +1,19 @@
import torch
from tqdm import tqdm
from lightning import LightningDataModule
from datasets import load_dataset
from datasets import load_dataset, concatenate_datasets
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_undirected
from .mesh_data import MeshData
from typing import List, Union
class GraphDataModule(LightningDataModule):
def __init__(
self,
hf_repo: str,
split_name: str,
split_name: Union[str, List[str]],
n_elements: int = None,
train_size: float = 0.2,
val_size: float = 0.1,
@@ -44,8 +45,30 @@ class GraphDataModule(LightningDataModule):
self.radius = radius
def prepare_data(self):
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
if isinstance(self.split_name, list):
dataset_list = []
geometry_list = []
for split in self.split_name:
dataset_list.append(
load_dataset(self.hf_repo, name="snapshots")[split]
)
geometry_list.append(
load_dataset(self.hf_repo, name="geometry")[split]
)
dataset = concatenate_datasets(dataset_list)
geometry = concatenate_datasets(geometry_list)
idx = torch.randperm(len(dataset))
dataset = dataset.select(idx.tolist())
geometry = geometry.select(idx.tolist())
else:
dataset = load_dataset(self.hf_repo, name="snapshots")[
self.split_name
]
geometry = load_dataset(self.hf_repo, name="geometry")[
self.split_name
]
if self.n_elements is not None:
dataset = dataset.select(range(self.n_elements))
geometry = geometry.select(range(self.n_elements))
@@ -86,7 +109,7 @@ class GraphDataModule(LightningDataModule):
dim=0,
)
)
print(temperatures.shape)
# print(temperatures.shape)
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
@@ -103,9 +126,7 @@ class GraphDataModule(LightningDataModule):
boundary_mask = torch.tensor(
geometry["constraints_mask"], dtype=torch.int64
)
boundary_values = torch.tensor(
geometry["constraints_values"], dtype=torch.float32
)
boundary_values = temperatures[0, boundary_mask]
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
if self.remove_boundary_edges: