fix model and datamodule

This commit is contained in:
Filippo Olivo
2025-12-15 09:08:21 +01:00
parent 3cc1d230e4
commit a9d56a3ed9
2 changed files with 69 additions and 50 deletions

View File

@@ -17,7 +17,7 @@ def import_class(class_path: str):
def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx): def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
# print(pos_.shape, y_.shape, y_pred_.shape, y_true_.shape) # print(pos_.shape, y_.shape, y_pred_.shape, y_true_.shape)
for j in [0]: for j in [0, 5, 10, 20]:
idx = (batch == j).nonzero(as_tuple=True)[0] idx = (batch == j).nonzero(as_tuple=True)[0]
y = y_[idx].detach().cpu() y = y_[idx].detach().cpu()
y_pred = y_pred_[idx].detach().cpu() y_pred = y_pred_[idx].detach().cpu()
@@ -38,39 +38,37 @@ def _plot_mesh(pos_, y_, y_pred_, y_true_, batch, i, batch_idx):
# plt.savefig("test_scatter_step_before.png", dpi=72) # plt.savefig("test_scatter_step_before.png", dpi=72)
# x = z # x = z
plt.subplot(1, 3, 1) plt.subplot(1, 3, 1)
# plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100) plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100)
plt.scatter( # plt.scatter(
pos[:, 0], # pos[:, 0],
pos[:, 1], # pos[:, 1],
c=y_pred.squeeze().numpy(), # c=y_pred.squeeze().numpy(),
s=20, # s=20,
cmap="viridis", # cmap="viridis",
) # )
plt.colorbar() plt.colorbar()
plt.title("Step t Predicted") plt.title("Step t Predicted")
plt.subplot(1, 3, 2) plt.subplot(1, 3, 2)
# plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100) plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100)
plt.scatter( # plt.scatter(
pos[:, 0], # pos[:, 0],
pos[:, 1], # pos[:, 1],
c=y_true.squeeze().numpy(), # c=y_true.squeeze().numpy(),
s=20, # s=20,
cmap="viridis", # cmap="viridis",
) # )
plt.colorbar() plt.colorbar()
plt.title("t True") plt.title("t True")
plt.subplot(1, 3, 3) plt.subplot(1, 3, 3)
per_element_relative_error = torch.abs(y_pred - y_true) / torch.clamp( per_element_relative_error = torch.abs(y_pred - y_true)
torch.abs(y_true), min=1e-6 plt.tricontourf(tria, per_element_relative_error.squeeze(), levels=100)
) # plt.scatter(
# plt.tricontourf(tria, per_element_relative_error.squeeze(), levels=100) # pos[:, 0],
plt.scatter( # pos[:, 1],
pos[:, 0], # c=per_element_relative_error.squeeze().numpy(),
pos[:, 1], # s=20,
c=per_element_relative_error.squeeze().numpy(), # cmap="viridis",
s=20, # )
cmap="viridis",
)
plt.colorbar() plt.colorbar()
plt.title("Relative Error") plt.title("Relative Error")
plt.suptitle("GNO", fontsize=16) plt.suptitle("GNO", fontsize=16)
@@ -216,20 +214,20 @@ class GraphSolver(LightningModule):
batch.boundary_values, batch.boundary_values,
conductivity, conductivity,
) )
if ( # if (
batch_idx == 0 # batch_idx == 0
and self.current_epoch % 10 == 0 # and self.current_epoch % 10 == 0
and self.current_epoch > 0 # and self.current_epoch > 0
): # ):
_plot_mesh( # _plot_mesh(
batch.pos, # batch.pos,
x, # x,
out, # out,
y[:, i, :], # y[:, i, :],
batch.batch, # batch.batch,
i, # i,
self.current_epoch, # self.current_epoch,
) # )
x = out x = out
losses.append(self.loss(out, y[:, i, :])) losses.append(self.loss(out, y[:, i, :]))

View File

@@ -1,18 +1,19 @@
import torch import torch
from tqdm import tqdm from tqdm import tqdm
from lightning import LightningDataModule from lightning import LightningDataModule
from datasets import load_dataset from datasets import load_dataset, concatenate_datasets
from torch_geometric.data import Data from torch_geometric.data import Data
from torch_geometric.loader import DataLoader from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_undirected from torch_geometric.utils import to_undirected
from .mesh_data import MeshData from .mesh_data import MeshData
from typing import List, Union
class GraphDataModule(LightningDataModule): class GraphDataModule(LightningDataModule):
def __init__( def __init__(
self, self,
hf_repo: str, hf_repo: str,
split_name: str, split_name: Union[str, List[str]],
n_elements: int = None, n_elements: int = None,
train_size: float = 0.2, train_size: float = 0.2,
val_size: float = 0.1, val_size: float = 0.1,
@@ -44,8 +45,30 @@ class GraphDataModule(LightningDataModule):
self.radius = radius self.radius = radius
def prepare_data(self): def prepare_data(self):
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name] if isinstance(self.split_name, list):
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name] dataset_list = []
geometry_list = []
for split in self.split_name:
dataset_list.append(
load_dataset(self.hf_repo, name="snapshots")[split]
)
geometry_list.append(
load_dataset(self.hf_repo, name="geometry")[split]
)
dataset = concatenate_datasets(dataset_list)
geometry = concatenate_datasets(geometry_list)
idx = torch.randperm(len(dataset))
dataset = dataset.select(idx.tolist())
geometry = geometry.select(idx.tolist())
else:
dataset = load_dataset(self.hf_repo, name="snapshots")[
self.split_name
]
geometry = load_dataset(self.hf_repo, name="geometry")[
self.split_name
]
if self.n_elements is not None: if self.n_elements is not None:
dataset = dataset.select(range(self.n_elements)) dataset = dataset.select(range(self.n_elements))
geometry = geometry.select(range(self.n_elements)) geometry = geometry.select(range(self.n_elements))
@@ -86,7 +109,7 @@ class GraphDataModule(LightningDataModule):
dim=0, dim=0,
) )
) )
print(temperatures.shape) # print(temperatures.shape)
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2] pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
@@ -103,9 +126,7 @@ class GraphDataModule(LightningDataModule):
boundary_mask = torch.tensor( boundary_mask = torch.tensor(
geometry["constraints_mask"], dtype=torch.int64 geometry["constraints_mask"], dtype=torch.int64
) )
boundary_values = torch.tensor( boundary_values = temperatures[0, boundary_mask]
geometry["constraints_values"], dtype=torch.float32
)
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1) edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
if self.remove_boundary_edges: if self.remove_boundary_edges: