improve unrolling

This commit is contained in:
Filippo Olivo
2025-10-02 10:17:01 +02:00
parent c6c416e682
commit b07e305cb5
5 changed files with 322 additions and 105 deletions

View File

@@ -5,6 +5,7 @@ from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_undirected
from .mesh_data import MeshData
class GraphDataModule(LightningDataModule):
@@ -12,7 +13,7 @@ class GraphDataModule(LightningDataModule):
self,
hf_repo: str,
split_name: str,
train_size: float = 0.8,
train_size: float = 0.2,
val_size: float = 0.1,
test_size: float = 0.1,
batch_size: int = 32,
@@ -40,45 +41,79 @@ class GraphDataModule(LightningDataModule):
pos = torch.tensor(self.geometry["points"][0], dtype=torch.float32)[
:, :2
]
bottom_boundary_ids = torch.tensor(
self.geometry["bottom_boundary_ids"][0], dtype=torch.int64
bottom_ids = torch.tensor(
self.geometry["bottom_boundary_ids"][0], dtype=torch.long
)
top_ids = torch.tensor(
self.geometry["top_boundary_ids"][0], dtype=torch.long
)
left_ids = torch.tensor(
self.geometry["left_boundary_ids"][0], dtype=torch.long
)
right_ids = torch.tensor(
self.geometry["right_boundary_ids"][0], dtype=torch.long
)
self.data = [
self._build_dataset(
torch.tensor(snapshot["conductivity"], dtype=torch.float32),
torch.tensor(snapshot["boundary_values"], dtype=torch.float32),
torch.tensor(snapshot["temperature"], dtype=torch.float32),
snapshot,
edge_index.T,
pos,
bottom_boundary_ids,
bottom_ids,
top_ids,
left_ids,
right_ids,
)
for snapshot in tqdm(hf_dataset, desc="Building graphs")
]
def _build_dataset(
self,
conductivity: torch.Tensor,
boundary_vales: torch.Tensor,
temperature: torch.Tensor,
snapshot: dict,
edge_index: torch.Tensor,
pos: torch.Tensor,
bottom_boundary_ids: torch.Tensor,
bottom_ids: torch.Tensor,
top_ids: torch.Tensor,
left_ids: torch.Tensor,
right_ids: torch.Tensor,
) -> Data:
conductivity = torch.tensor(
snapshot["conductivity"], dtype=torch.float32
)
temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32)
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
edge_attr = pos[edge_index[0]] - pos[edge_index[1]]
edge_attr = torch.cat(
[edge_attr, torch.norm(edge_attr, dim=1).unsqueeze(-1)], dim=1
)
boundary_temperature = boundary_vales[bottom_boundary_ids].max()
boundary_vales[bottom_boundary_ids] = 1.0
return Data(
x=boundary_vales.unsqueeze(-1),
left_ids = left_ids[~torch.isin(left_ids, bottom_ids)]
right_ids = right_ids[~torch.isin(right_ids, bottom_ids)]
left_ids = left_ids[~torch.isin(left_ids, top_ids)]
right_ids = right_ids[~torch.isin(right_ids, top_ids)]
bottom_bc = temperature[bottom_ids].median()
bottom_bc_mask = torch.ones(len(bottom_ids)) * bottom_bc
left_bc = temperature[left_ids].median()
left_bc_mask = torch.ones(len(left_ids)) * left_bc
right_bc = temperature[right_ids].median()
right_bc_mask = torch.ones(len(right_ids)) * right_bc
boundary_values = torch.cat(
[bottom_bc_mask, right_bc_mask, left_bc_mask], dim=0
)
boundary_mask = torch.cat([bottom_ids, right_ids, left_ids], dim=0)
return MeshData(
x=torch.rand_like(temperature).unsqueeze(-1),
c=conductivity.unsqueeze(-1),
edge_index=edge_index,
pos=pos,
edge_attr=edge_attr,
boundary_mask=boundary_mask,
boundary_values=boundary_values.unsqueeze(-1),
y=temperature.unsqueeze(-1),
boundary_temperature=boundary_vales[bottom_boundary_ids].max(),
)
def setup(self, stage: str = None):
@@ -92,13 +127,18 @@ class GraphDataModule(LightningDataModule):
if stage == "test" or stage is None:
self.test_data = self.data[val_end:]
def train_dataloader(self) -> DataLoader:
# nel tuo LightningDataModule
def train_dataloader(self):
return DataLoader(
self.train_data, batch_size=self.batch_size, shuffle=True
)
def val_dataloader(self) -> DataLoader:
return DataLoader(self.val_data, batch_size=self.batch_size)
def val_dataloader(self):
return DataLoader(
self.val_data, batch_size=self.batch_size, shuffle=False
)
def test_dataloader(self) -> DataLoader:
return DataLoader(self.test_data, batch_size=self.batch_size)
def test_dataloader(self):
return DataLoader(
self.test_data, batch_size=self.batch_size, shuffle=False
)